

# **VALVES AND ELECTRONICS**

# Technical Catalogue May 2016





# The company

Brevini Fluid Power, part of the Brevini group, was established in 2003 in Reggio Emilia where it has its head office.

Brevini Fluid Power manufactures hydraulic components and application packages: a very large range suited to several operational requirements and applications thanks to a strict interaction between mechanical, hydraulic and electronic components.

Brevini Fluid Power is among the top manufacturers in Italy and a major player in Europe and in the world.

# **International presence**

Brevini Fluid Power operates internationally with 15 branches all over the world placed in major industrialized countries: Italy, France, Germany, English, Romania, Holland, Finland, China, India, Singapore and the United States. The network is constantly expanding by opening new branches in just a few years.

The branches are guided by managers that have an excellent knowledge of their own country.

The advantages this brings are evident:

- Reduced delivery times thanks to the branches warehouses;
- Easy customization of products and systems basing on the customer's needs, thanks to the competence and professional skills of the branches' own technical and servicing departments;
- Quick servicing:
- A ready sales staff at hand and closer to the customers, which ensures high flexibility plus experience.

The production facilities are located throughout Reggio Emilia, Ozzano Emilia (BO), Noceto (PR), Novellara (RE), Yancheng (province of Jiangsu, China) which was inaugurated in 2009 and became operative since 2010.

# **Competitive Strategy**

Innovation combined with the focus on customers is the strength of the Brevini Fluid Power "brand", born from the forty-year-long experiences of Aron, Hydr-App, SAM Hydraulik, Oleodinamica Reggiana, VPS Brevini and Brevini Hydraulics.

Brevini Fluid Power proposes itself as a "local hub", as it happened to BPE Electronics in 2008 and OT Oiltechnology in 2009, in order to create a new Made in Italy global player in the world of hydraulics, increasingly more integrated with electronics.

The purpose is still the development of a very large range of products forming together integrated packages able to meet various application needs. Our ten-year-long partnership relations with hundreds of customers all over the world are the best synthesis of Brevini Fluid Power's operational philosophy.

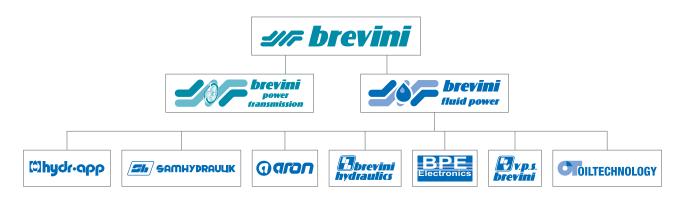
Sharing of know-how and several experiences have made Brevini Fluid Power a more global company, more incisive in international markets and closer to its customers.

# **Product lines**

The product lines are numerous and well-structured aimed to cover every needs: a strong basis on which to develop the engineering of application packages and complete systems. The offer is improving in the direction of a solution supplier often developed in co-design with the customer, both for the mobile and industrial sector.

**Hydr-App Product Line**: Hydraulic power packs and mini hydraulic packs (whether standard or customised), cartridge valves and solenoid valves, gear boxes and transmission components.

S.A.M. Hydraulik Product Line: Axial piston pumps and motors for medium and high pressure, orbital motors.


**Aron Product Line**: Directional, flow, on-off and proportional pressure control valves. Modular and cartridge valves, subplates and blocks.

**Brevini Hydraulics Product Line**: Proportional directional valves, joysticks and electronic modules.

**BPE Electronics Product Line**: Sensors, load cells, boards and electronic controls via CAN, display units, planarity indicators.

**VPS Brevini Product Line**: Mono-block and modular mobile valves.

**OT Oiltechnology Product Line**: Gear pumps and motors, flow dividers.





# VALVES AND ELECTRONICS TECHNICAL CATALOGUE 2016

# এদ brevini

Brevini Fluid Power S.p.A. Via Moscova, 6 42124 Reggio Emilia - Italy Tel. +39 0522 270711 Fax +39 0522 270660 www.brevinifluidpower.com info@brevinifluidpower.com

© 2016 Brevini Fluid Power S.p.A. All rights reserved. Hydr-App, SAM Hydraulik, Aron, Brevini Hydraulics, BPE Electronics, VPS Brevini, OT Oiltechnology, logos are trademarks or are registered trademarks of Brevini Fluid Power S.p.A. or other companies of the Brevini Group in Italy and other countries.

The technical features supplied in this catalogue are non binding and no legal action can be taken against such material. Brevini Fluid Power will not be held responsible for information and specifications which may lead to error or incorrect interpretations. Given the continuous technical research aimed at improved technical features of our products, Brevini Fluid Power reserves the right to make change that are considered appropriate without any prior notice. This catalogue cannot be reproduced (in while or in part) without the prior written consent of Brevini Fluid Power. This catalogue supersedes all previous ones.

Use of the products in this catalogue must comply with the operating limits given in the technical specifications. The type of application and operating conditions must be assessed as normal or in malfunction in order to avoid endangering the safety of people and/or items.

General terms and conditions of sale see website: www.brevinifluidpower.com.

| Сн. І    | DIRECTIONAL CONTROL                                          | 1  |
|----------|--------------------------------------------------------------|----|
| Сн. ІІ   | Pressure control                                             | 2  |
| Сн. III  | FLOW CONTROL                                                 | 3  |
| Сн. IV   | MODULAR VALVES                                               | 4  |
| Сн. V    | CARTRIDGE VALVES ISO 7368 (SEE ALSO CATALOGUE CODE DOC00044) | 5  |
| Сн. VI   | IN LINE VALVES (SEE CATALOGUE CODE DOC00044)                 | 6  |
| Сн. VII  | SUBPLATES                                                    | 7  |
| Сн. VIII | PROPORTIONAL CONTROL                                         | 8  |
| Сн. IX   | ELECTRONICS                                                  | 9  |
| Сн. Х    | Systems                                                      | 10 |
| Сн. XI   | STACKABLE VALVES (SEE CATALOGUE CODE DOC00046)               | 11 |
| Сн. XII  | DC / AC STANDARD COILS "UL RECOGNIZED" COILS                 | 12 |
|          |                                                              |    |

The products shown on this catalog are parts of **Q aron** line.



| A        |                | ADP.5.V  | Ch. I Page 40    | AM.5.VM        | CH. IV PAGE 24  |
|----------|----------------|----------|------------------|----------------|-----------------|
| A.66     | Ch. IV Page 19 | ADPH.5   | Ch. I Page 46    | AM.5.VR        | CH. IV PAGE 27  |
| A.88     | Ch. IV Page 34 | AM.2.QF  | CH. IV PAGE 5    | AM.5.VS        | CH. IV PAGE 29  |
| AD.2.E   | Ch. I Page 4   | AM.2.UD  | Ch. IV Page 2    | AM.7.QF        | Ch. IV Page 38  |
| AD.3.D   | Ch. I Page 18  | AM.2.UP  | Ch. IV Page 3    | AM.7.UP        | Ch. IV Page 37  |
| AD.3.E   | Ch. I Page 11  | AM.2.VM  | Ch. IV Page 4    | AM.66          | CH. IV PAGE 18  |
| AD.3.EJ* | Ch. I Page 12  | AM.3.ABU | Ch. III Page 4   | AM.88          | CH. IV PAGE 33  |
| AD.3.I   | Ch. I Page 42  | AM.3.CP  | Ch. IV Page 11   | _              |                 |
| AD.3.L   | Ch. I Page 15  | AM.3.H   | Ch. VIII Page 18 | В              |                 |
| AD.3.M   | Ch. I Page 18  | AM.3.QF  | Ch. IV Page 17   | ВА.60 / ва.10  | Ch. X Page 2    |
| AD.3.O   | Ch. I Page 17  | AM.3.RD  | Ch. IV Page 12   | ВА.130 / ва.10 | CH. X PAGE 5    |
| AD.3.P   | Ch. I Page 17  | AM.3.RGT | Ch. IV Page 20   | BC.06.25/27    | Ch. VII Page 14 |
| AD.3.RI  | Ch. I Page 44  | AM.3.SD  | Ch. IV Page 12   | BC.06.30/32    | Ch. VII Page 15 |
| AD.3.V   | Ch. I Page 14  | AM.3.SH  | CH. IV PAGE 16   | BC.06.40       | Ch. VII Page 15 |
| AD.3.XG  | Ch. I Page 23  | AM.3.UD  | CH. IV PAGE 7    | BC.06.41/*     | Ch. VII Page 15 |
| AD.5.D   | Ch. I Page 34  | AM.3.UP  | CH. IV PAGE 8    | BC.06.XPQ3     | Ch. VII Page 13 |
| AD.5.E   | Ch. I Page 32  | AM.3.UP1 | CH. IV PAGE 8    | BC.06.XQ3      | Ch. VII Page 13 |
| AD.5.EJ* | Ch. I Page 33  | AM.3.VI  | CH. IV PAGE 9    | BC.10.06       | Ch. VII Page 27 |
| AD.5.EQ5 | Ch. I Page 33  | AM.3.VM  | Ch. IV Page 9    | BC.2.50.AB     | CH. VII PAGE 4  |
| AD.5.I   | Ch. I Page 43  | AM.3.VR  | Ch. IV Page 13   | BC.2.50.PT     | CH. VII PAGE 4  |
| AD.5.L   | Ch. I Page 35  | AM.3.VS  | Ch. IV Page 15   | BC.2.51        | CH. VII PAGE 4  |
| AD.5.O   | Ch. I Page 34  | AM.3.XMP | Ch. VIII Page 28 | BC.3.07        | Ch. VII Page 12 |
| AD.5.RI  | Ch. I Page 45  | AM.5.CP  | Ch. IV Page 26   | BC.3.08        | Ch. VII Page 13 |
| ADC.3.E  | Ch. I Page 5   | AM.5.H   | Ch. VIII Page 19 | BC.3.09        | Ch. VII Page 13 |
| ADH.5    | Ch. I Page 49  | AM.5.QF  | Ch. IV Page 31   | BC.3.107       | CH. VII PAGE 12 |
| ADH.7    | Ch. I Page 53  | AM.5.RGT | CH. IV PAGE 35   | BC.3.25/27     | Ch. VII Page 10 |
| ADH.8    | Ch. I Page 58  | AM.5.SH  | Ch. IV Page 30   | BC.3.30/32     | Ch. VII Page 10 |
| ADL.06.6 | Ch. I Page 65  | AM.5.UD  | Ch. IV Page 22   | BC.3.40        | Ch. VII Page 10 |
| ADL.10.6 | Ch. I Page 68  | AM.5.UP  | Ch. IV Page 23   | BC.3.41/*      | Ch. VII Page 11 |
| ADP.5.E  | Ch. I Page 37  | AM.5.VI  | Ch. IV Page 24   | BC.3.50        | Ch. VII Page 12 |

| BC.3.51    | CH. VII PAGE 12 | BS.2.20     | Ch. VII Page 3  | BSH.7.12            | Ch. I Page 56            |
|------------|-----------------|-------------|-----------------|---------------------|--------------------------|
| BC.5.07    | Ch. VII Page 27 | BS.3.**     | Ch. VII Page 7  | BSH.7.13            | Ch. I Page 56            |
| BC.5.107   | CH. VII PAGE 27 | BS.3.10/11  | CH. VII PAGE 8  | BSH.7.14            | Ch. I Page 56            |
| BC.5.30/32 | CH. VII PAGE 26 | BS.3.12/13  | Ch. VII Page 8  | BSH.7.15            | Ch. I Page 57            |
| BC.5.36/28 | CH. VII PAGE 24 | BS.3.14/15  | Ch. VII Page 8  | BSH.7.16            | Ch. I Page 57            |
| BC.5.3A    | Сн. VII Page 27 | BS.3.16/17  | Ch. VII Page 8  | BSH.7.17            | Ch. I Page 57            |
| BC.5.40    | CH. VII PAGE 25 | BS.3.2      | CH. VII PAGE 3  | BSH.8.13*           | Ch. I Page 61            |
| BC.5.41/*  | CH. VII PAGE 25 | BS.3.20/21  | Ch. VII Page 9  | BSH.8.13            | Ch. I Page 61            |
| BC.5.50    | Ch. VII Page 26 | BS.3.W      | Ch. VII Page 9  | BSH.8.15            | Ch. I Page 61            |
| BC.5.51    | Ch. VII Page 26 | BS.5.**     | Ch. VII Page 19 | BSH.8.17            | Ch. I Page 61            |
| BDL.06.6   | Ch. I Page 66   | BS.5.12     | Ch. VII Page 20 |                     |                          |
| BM.2       | Ch. VII Page 5  | BS.5.13     | Ch. VII Page 20 | C                   |                          |
| BM.2.50    | Ch. VII Page 6  | BS.5.14     | Ch. VII Page 20 | C*P                 | CH. V PAGE 9             |
| BM.2.60    | Ch. VII Page 5  | BS.5.15     | Ch. VII Page 20 | CDL.04.6            | Ch. I Page 62            |
| BM.2.70    | CH. VII PAGE 6  | BS.5.16     | Ch. VII Page 21 | CDL.06.6            | Ch. I Page 64            |
| BM.3       | Ch. VII Page 16 | BS.5.17     | CH. VII PAGE 21 | CDL.10.6            | Ch. I Page 67            |
| BM.3.50    | Ch. VII Page 17 | BS.5.29     | CH. VII PAGE 23 | CEP.S               | CH. IX PAGE 2            |
| BM.3.52    | Ch. VII Page 18 | BS.5.3      | CH. VII PAGE 21 | CMP.10              | Ch. VII Page 30          |
| BM.3.60    | CH. VII PAGE 16 | BS.5.30/31  | CH. VII PAGE 22 | CMP.16/25./CMP.E.16 | <b>/25</b> Ch. V Page 11 |
| BM.3.70    | Ch. VII Page 17 | BS.5.RGA    | Ch. X Page 8    | CONNECTORS STANDA   | RD CH. I PAGE 20         |
| BM.3.72    | CH. VII PAGE 18 | BS.5.RIA    | Ch. X Page 8    | CSP.16/25           | Ch. V Page 11            |
| BM.5       | Ch. VII Page 28 | BS.VMP.10   | Ch. VII Page 9  | CUP.16/25/CUP.E.16/ | <b>25</b> Ch. V Page 11  |
| BM.5.50    | Ch. VII Page 28 | BS.VMP.16   | CH. II PAGE 11  | l .                 |                          |
| BM.5.60    | Ch. VII Page 29 | BS.VMP.20   | Ch. VII Page 23 | J                   |                          |
| BM.5.70    | CH. VII PAGE 29 | BS.VMP.25   | Ch. II Page 11  | JC.3.D              | Ch. IX Page 28           |
| BM.5.80    | Ch. VII Page 29 | BS.VMP.25/1 | CH. II PAGE 11  | JC.5.D              | CH. IX PAGE 30           |
| BS.2.**    | Ch. VII Page 2  | BSC.5.69    | CH. X PAGE 7    | JC.F.D              | CH. IX PAGE 32           |
| BS.2.12    | Ch. VII Page 2  | BSH.5.13    | Ch. I Page 52   |                     | •                        |
| BS.2.14    | Ch. VII Page 2  | BSH.5.17    | Ch. I Page 52   | K                   |                          |
| BS.2.16    | Ch. VII Page 3  | BSH.5.31    | Ch. I Page 52   | KEC.**.**           | Ch. V Page 3             |
|            |                 | •           | l l             |                     |                          |



| KEC.**.M*/U*/SL     | Ch. V Page 9           | MAV1152HY       | Ch. IX Page 22 | V.M.L / V.S.L / V.U.L | Ch. II Page 6     |
|---------------------|------------------------|-----------------|----------------|-----------------------|-------------------|
| KEC.16.CQ           | CH. V PAGE 6           | MAV4211         | Ch. IX Page 25 | V.M.P / V.S.P / V.U.P | CH. II PAGE 6     |
| KEC.16.ME/KEC.16.M  | <b>P</b> Ch. V Page 10 |                 |                | X                     |                   |
| KEC.16.PC           | CH. V PAGE 7           | P               |                | XD.2.A / XD.2.C       | Ch. VIII Page 2   |
| KEC.16.RC           | Ch. V Page 7           | PVR.3           | Ch. II Page 2  | XD.3.A / XD.3.C       | Ch. VIII Page 4   |
| KEC.16.RI           | CH. V PAGE 6           | PVR.5           | Ch. II Page 4  | XDC.3. SERIE 2        | Ch. VIII Page 10  |
| KEC.16.SH/KEC.16.S  | <b>P</b> Ch. V Page 8  | PVR.U.3         | Ch. II Page 2  | XDP.3.A/XDP.3.C       | CH. VIII PAGE 6   |
| KEC.16.SL           | Ch. V Page 10          | PVR.U.5         | Ch. II Page 4  | XDP.5.A/XDP.5.C       | . Ch. VIII Page 8 |
| KEC.16.UE/KEC.16.UN | I Ch. V Page 10        | PVS.3           | Ch. II Page 2  | XECV.3                | Ch. VIII Page 12  |
| KEC.25.CQ           | CH. V PAGE 6           | PVS.5           | Ch. II Page 4  | XEPV.3                | Ch. VIII Page 15  |
| KEC.25.ME           | Ch. V Page 10          | PVS.U.3         | Ch. II Page 2  | XP.3                  | Ch. VIII Page 26  |
| KEC.25.MP           | Ch. V Page 10          | PVS.U.5         | Ch. II Page 4  | XQ.3                  | Ch. VIII Page 20  |
| KEC.25.PC           | Ch. V Page 7           |                 |                | XQP.3                 | Ch. VIII Page 22  |
| KEC.25.RC           | Ch. V Page 7           | Q               |                | XQP.5                 | Ch. VIII Page 24  |
| KEC.25.RI           | CH. V PAGE 6           | QC.3.2          | Ch. III Page 2 |                       |                   |
| KEC.25.SH           | CH. V PAGE 8           | QC.3.3          | CH. III PAGE 3 |                       |                   |
| KEC.25.SL           | Ch. V Page 10          | QCV.3.2         | CH. III PAGE 5 |                       |                   |
| KEC.25.SP           | CH. V PAGE 8           |                 |                |                       |                   |
| KEC.25.UE/KEC.25.UI | N Ch. V Page 10        | R               |                |                       |                   |
| KEL                 | CH. V PAGE 3           | REM.D.RA        | Ch. IX Page 7  |                       |                   |
| KEL.16/25           | CH. V PAGE 5           | REM.S.RA        | Ch. IX Page 4  |                       |                   |
| KRA.16/25           | Ch. V Page 12          | S               |                |                       |                   |
|                     |                        |                 |                |                       |                   |
| L                   |                        | SE.3.AN21       | CH. IX PAGE 11 |                       |                   |
| LAB3                | CH. IX PAGE 15         | SE.3.AN21RS     | Ch. IX Page 13 |                       |                   |
| LVDT                | Ch. I Page 22          | STUDS - MODULAR |                |                       |                   |
| LE VARIANT          | Ch. I Page 21          | CETOP 2         | CH. IV PAGE 6  |                       |                   |
|                     |                        | CETOP 3         | Ch. IV Page 21 |                       |                   |
| M                   |                        | CETOP 5         | CH. IV PAGE 36 |                       |                   |
| MAV1152             | CH. IX PAGE 19         | W               |                |                       |                   |



# INTRODUCTION

Read this instructions carefully before installation. All operations must be carried out by qualified personnel following the instructions.

The user must periodically inspect, based on the conditions of use and the substances used, the presence of corrosion, dirt, the state of wear and correct function of the valves.

Always observe first the operating conditions given in datasheet of the valve.

# **HYDRAULIC FLUID**

Observe the recommendations given in the data sheet of the valve. Use only mineral oil (HL, HLP) according to DIN 51524. Use of other different fluids may damage the good operation of the valve.

# **VISCOSITY**

Observe the recommendations given in the data sheet of the valve. The oil viscosity must be in the range of  $10~\text{mm}^2/\text{s}$  to  $500~\text{mm}^2/\text{s}$ .

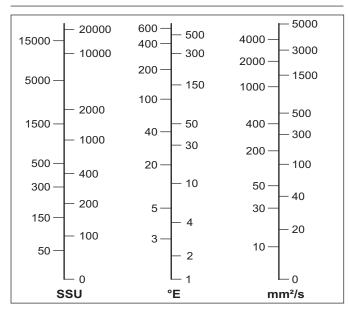
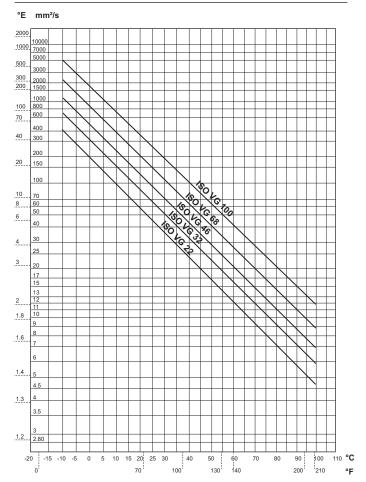

Recommended oil viscosity 46 mm<sup>2</sup>/s (32 mm<sup>2</sup>/s for Cartridge valves)

Table 1: ISO viscosity grades


| Viscosity<br>grade | Average<br>kinematic<br>viscosity | lim  | c-viscosity<br>nits<br>@ 40°C |  |
|--------------------|-----------------------------------|------|-------------------------------|--|
|                    | mm²/s @ 40°C                      | min. | max.                          |  |
| ISO VG 10          | 10                                | 9.00 | 11.0                          |  |
| ISO VG 15          | 15                                | 13.5 | 16.5                          |  |
| ISO VG 22          | 22                                | 19.8 | 24.2                          |  |
| ISO VG 32          | 32                                | 28.8 | 35.2                          |  |
| ISO VG 46          | 46                                | 41.4 | 50.6                          |  |
| ISO VG 68          | 68                                | 61.2 | 74.8                          |  |
| ISO VG 100         | 100                               | 90.0 | 110                           |  |

= Values used in the chart "Oil viscosity according to temperature"

# CONVERSION TABLE SSU / °E / mm²/s



# **OIL VISCOSITY ACCORDING TO TEMPERATURE**



# **CONTAMINATION**

Oil contamination is the main cause of faults and malfunction in hydraulic systems. Abrasive particles in the fluid erode or block moving parts, leading to system malfunction.

The valves we are offering do not require filtering characteristics any higher than those needed for usual hydraulic components such as pumps, motors, etc.

However, accurate filtering does guarantee reliability and a long life to all the system's hydraulic parts. Reliable performance and long working life for all oil-pressure parts is assured by maintaining the level of fluid contamination within the limits specified in the data sheet of the valve.

Hydraulic fluid must also be cleaned properly before filling the hydraulic circuit, especially when commissioning a new system, as this is when the oil contamination generally peaks due to its flushing effect on the components, and the running-in of the pump.

Maximum contamination level is required on datasheet of the valve according to ISO 4406:1999.

In the following table there is the correspondence between ISO 4406:1999 and old standard NAS 1638 for information purpose:

The standard ISO 4406:1999 defines the contamination level with three numbers that relate with the number of particles of average dimension equal or greater than 4  $\mu$ m, 6  $\mu$ m e 14  $\mu$ m, in 1 ml of fliuid.

In following table there is a reference to reccomended contamination level and correspondence with old NAS 1638 standard.

Table 2: Reccomanded contamination level.

|                                                                                                                                                              | Oil filtratio   | n recomm        | endations             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------------|
| Type of system                                                                                                                                               | Cleanliness     | Absolute        |                       |
| Type of valve                                                                                                                                                | recomme         | nded            | filtration            |
| Type of valve                                                                                                                                                | ISO 4406 : 1999 | NAS 1638<br>(*) | micron rating<br>(**) |
| Systems or components operating at HIGH PRESSURE > 250 bar (3600 psi) HIGH DUTY CYCLE APPLICATIONS Systems or components with LOW dirt tolerance             | 18 / 16 / 13    | 7 - 8           | 5                     |
| Systems or components operating at MEDIUM / HIGH PRESSURE Systems and components with moderate dirt tolerance                                                | 19 / 17 / 14    | 9               | 10                    |
| Systems or components operating at<br>LOW PRESSURE < 100 bar (1500 psi)<br>LOW DUTY CYCLE APPLICATIONS<br>Systems and components with GOOD<br>dirt tolerance | 20 / 18 / 15    | 10 - 11         | 20                    |

- Contamination class NAS 1638: it is determined by counting the total particles of different size ranges contained in 100 ml of fluid.
- \*\* Absolute filtration: it is a characteristic of each filter, it refers the size (in micron) of the largest sperical particle wich may pass through the filter.

# **WORKING TEMPERATURES**

Ambient temperature range: -25°C to +60°C

Fluid temperature range (NBR seals): -25°C to +75°C

Thermal shocks can affect the performance and the expected life of the product, hence it is necessary to protect the product from these conditions.

## **SEALS**

O-rings made in Acrylonitrile Butadiene (NBR) are normally fitted on the valves. The backup rings that protect the O-rings are also made in NBR, or sometimes PTFE. Both the O-rings and the backup rings are suitable for the working temperatures mentioned above.

In the case of fluid temperatures > 75°C, FKM seals must be used (identified with "V1" variant).

# **ELECTRICAL POWER SUPPLY**

Solenoid valves coils are designed to operate safely in the voltage range of  $\pm 10\%$  of nominal voltage at max.  $60^{\circ}$ C ambient temperature. The combination of permanent overvoltage and very hot temperatures can stress the solenoid. Therefore always a good heat dissipation and voltage level has to be assured. Faulty coils may only be replaced by new, interchangeable, tested compo-

nents in original-equipment quality.

Before removing a coil, voltage must be disconnected.

When replacing the coil, be aware to insert O-Rings in order to avoid the entrance of water.

# **INSTALLATION**

The mounting surface must feature surface quality specified in data sheet of the valve: for example for Cetop valves generally is required Ra  $\leq 1.6 \mu m$  and flatness  $\leq 0.03$  mm over 100 mm length. Normally in cartridge valve for sealing diameters of the cavities, is required roughness Ra  $\leq 1.6 \mu m$ . The surfaces and openings in the assembly plate must be free from impurity or dirt.

Make sure the O-Rings fit correctly in their seats.

Fixing screws must comply with the dimensions and the strength class specified in the data sheet and must be tightened at the specified tightening torque

Complete the electrical wiring. For circuit examples and pin assignments, see the relevant datasheet.

# **USE AND MAINTENANCE**

Observe the functional limits indicated in the technical catalogue On a periodic basis and based on the conditions of use, check for cleanliness, state of wear or fractures and correct performance of the valve.

If the O-rings are damaged, replace them with those supplied by the manufacturer.

To assure the best working conditions at all time, check the oil and replace it periodically (after the first 100 working hours and then after every 2000 working hours or at least once every year).

Attention: all installation and maintenance intervention must be performed by qualified staff.

# TRANSPORT AND STORAGE

The valve must be handled with care to avoid damage caused by impact, which could compromise its efficiency.

In the case of storage, keep the valves in a dry place and protect against dust and corrosive substances.

When storing for periods of more than 6 months, fill the valve with preserving oils and seal it.

# **WARRANTY AND SUPPLY CONDITIONS**

For the general warranty and supply conditions, please consult the specific sales contract or the "General terms and conditions of sale" document IOP 7-2-05. Downloaded from the website: www.brevinifluidpower.com

# **CONVERSION CHART**

| Туре                                | SI units                              |                    | Alternative units | Alternative units          |                                     |
|-------------------------------------|---------------------------------------|--------------------|-------------------|----------------------------|-------------------------------------|
| F                                   | Nauton                                | (NI) [1, ever /e2] | Kilogram force    | (kgf)                      | 1 kgf = 9.807 N                     |
| Force                               | orce Newton (N) [kgm/s <sup>2</sup> ] | pound force        | (lbf) [lbf/s²]    | 1 lgf = 4.448 N            |                                     |
|                                     | millimeter                            | (mm) [10 m]        | inch              | (in)                       | 1 in = 25.4 mm                      |
| Length                              | meter                                 | (km) [1000 m]      | yard              | (yd) [3ft]                 | 1 m = 1.0936 yd                     |
|                                     | kilometer                             | (km) [1000 m]      | mile              | (mile) [1760 yd]           | 1 mile = 1.609 km                   |
| Torque                              | Newton meter                          | (Nm)               | pound force.feet  | (lbf.ft)                   | 1 lbf.ft = 1.356 Nm                 |
| D                                   | 1:1-10/-44 (110/)                     | [1000 N /-]        | horsepower        | (hp)                       | 1 kW = 1.341 hp                     |
| Power   kiloWatt (kW)   [1000 Nm/s] | [1000 Nm/s]                           | metric horsepower  | (CV)              | 1 kW = 1.36 CV             |                                     |
|                                     |                                       |                    | bar               |                            | 1 MPa = 10 bar                      |
| Pressure                            | MegaPascal                            | (MPa) [ N/mm²]     | psi (lbf/ln²)     |                            | 1 MPa = 145 psi                     |
|                                     |                                       |                    | ton/f/ln²         |                            | 1 ton/f/ln <sup>2</sup> = 15.45 MPa |
| Fla                                 | 1:4/:                                 | (1 (== := )        | UK gal/min        |                            | 1 UK gal/min = 4.546 l/min          |
| Flow rate   liter/min   (I/min)     | (I/MIN)                               | US gal/min         |                   | 1 US gal/min = 3.785 l/min |                                     |
| Temperature                         | Degrees Celsius                       | (°C)               | Farenheit         | (°F)                       | 1°F = 1.8 °C+32                     |

|                | ABBREVIATIONS               |
|----------------|-----------------------------|
| AP             | HIGH PRESSURE CONNECTION    |
| AS             | Phase Lag (DEGREES)         |
| BP             | Low pressure connection     |
| С              | STROKE (MM)                 |
| CH             | Across flats                |
| Сн             | INTERNAL ACROSS FLATS       |
| DA             | AMPLITUDE DECAY (DB)        |
| DΡ             | DIFFERENTIAL PRESSURE (BAR) |
| F              | Force (N)                   |
| <b>l</b> %     | INPUT CURRENT (A)           |
| M              | MANOMETER CONNECTION        |
| NG             | Knob turns                  |
| OR             | SEAL RING                   |
| Р              | LOAD PRESSURE (BAR)         |
| PARBA          |                             |
| PL             | Parallel connection         |
| PR             | REDUCED PRESSURE (BAR)      |
| Q              | FLOW (L/MIN)                |
| Q <sub>P</sub> | Pump flow (L/min)           |
| SE             | ELASTIC PIN                 |
| SF             | BALL                        |
| SR             | SERIES CONNECTION           |
| X              | PILOTING                    |
| Υ              | Drainage                    |

# **DIRECTIONAL CONTROL VALVES**

CETOP 2/NG04

CETOP 3/NG06

**CETOP 3** 

ATEX 94/9/CE directive

CETOP 5/NG10

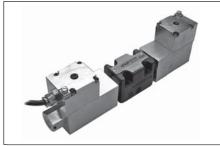
**CETOP 5/NG10 High performances** 

**Automatic reciprocating valves** 

Piloted valves and subplate mounting

Flow diversion valves

File: 01TA\_E 18/2011/e


1

# CETOP 2/NG04



| CETOP 2/NG04   | Ch. I Page 2 |
|----------------|--------------|
| AD.2.E         | CH. I PAGE 4 |
| "A09" DC coils | Ch. I Page 4 |

# ATEX 94/9/CE DIRECTIVE



| ATEX 94/9/CE DIRECTIVE | Ch. I Page 23 |
|------------------------|---------------|
| AD.3.XG                | Ch. I Page 25 |

# AUTOMATIC RECIPROCATING VALVES



| AD.3.I  | Ch. I Page 42 |
|---------|---------------|
| AD.5.I  | Ch. I Page 43 |
| AD.3.RI | Ch. I Page 44 |
| AD.5.RI | Ch. I Page 45 |

# CETOP 3/NG06



| ADC.3          | Ch. I Page 5 |
|----------------|--------------|
| "A09" DC coils | Ch. I Page 7 |

# **CETOP 5/NG10**



| CETOP 5/NG10        | Ch. I Page 29 |
|---------------------|---------------|
| AD.5.E              | Ch. I Page 32 |
| AD.5.EJ* E AD.5.EQ5 | Ch. I Page 33 |
| AD.5.O E AD.5.D     | Ch. I Page 34 |
| AD.5.L              | Ch. I Page 35 |
| "A16" DC coils      | Ch. I Page 36 |
| "K16" AC SOLENOIDS  | Ch. I Page 37 |

# PILOTED VALVES AND SUBPLATE MOUNTING



| ADPH.5 | Ch. I Page 46 |
|--------|---------------|
| ADH.5  | Ch. I Page 49 |
| BSH.5  | Ch. I Page 52 |
| ADH.7  | Ch. I Page 53 |
| BSH.7  | Ch. I Page 56 |
| ADH.8  | Ch. I Page 58 |
| BSH.8  | Ch. I Page 61 |

# **CETOP 3**



| CETOP 3/NG06               | Ch. I Page 8  |
|----------------------------|---------------|
| AD.3.E                     | Ch. I Page 11 |
| AD.3.EJ*                   | Ch. I Page 12 |
| AD.3.V                     | Ch. I Page 14 |
| AD.3.L                     | Ch. I Page 15 |
| CETOP 3 OTHER OPERATORS    | Ch. I Page 16 |
| AD.3.P E AD.3.O            | Ch. I Page 17 |
| AD.3.M E AD.3.D            | Ch. I Page 18 |
| "D15" DC coils             | Ch. I Page 19 |
| "B14" AC SOLENOIDS         | Ch. I Page 19 |
| STANDARD CONNECTORS        | Ch. I Page 20 |
| "LE" VARIANTS FOR ADC3/AD3 | Ch. I Page 21 |
| L.V.D.T.                   | Ch. I Page 22 |

# CETOP 5/NG10 HIGH PERFORMANCES



| ADP.5.E            | Ch. I Page 37 |
|--------------------|---------------|
| "D19" DC Solenoids | CH. I PAGE 39 |
| ADP.5.V            | Ch. I Page 40 |
| "D19" DC Solenoids | Ch. I Page 41 |

# FLOW DIVERSION VALVES



| CDL.04.6 "OEM MACHINERY"                           | Ch. I Page 62                  |
|----------------------------------------------------|--------------------------------|
| CDL.06.6 "OEM MACHINERY"                           | Ch. I Page 64                  |
| ADL.06.6 "OEM MACHINERY"                           | Ch. I Page 65                  |
| BDL.06.6. "OEM MACHINERY"                          | Ch. I Page 66                  |
| CDL.10.6 "OEM MACHINERY"                           | Ch. I Page 67                  |
|                                                    |                                |
| ADL.10.6 "OEM MACHINERY"                           | Ch. I Page 68                  |
| ADL.10.6 "OEM MACHINERY"  "A09" AND "D15" DC COILS | Ch. I Page 68<br>Ch. I Page 69 |



## CETOP 2/NG04

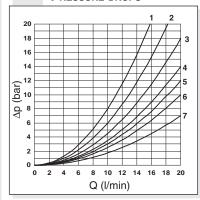
| AD.2.E              | Ch. I page 4  |
|---------------------|---------------|
| "A09" DC Coils      | Ch. I page 4  |
| STANDARD CONNECTORS | Ch. I page 20 |

# DIRECTIONAL CONTROL VALVES CETOP 2/NG4 // brevini

The ARON directional control valves NG4 are designed for subplate mounting with an interface in accordance with UNI ISO 4401 - 02 - 01 - 0 - 94 standard (ex CETOP R 35 H 4.2-4-02), and are the smallest on the market in their category whilst still featuring excellent performance.

The use of solenoids with wet armatures ensures quiet operation, means that dynamic seals are no longer required and important levels of counter-pressure are accepted on the return line. The solenoid's tube is screwed at valve body directly, while a locking ring nut seal the coil in right position.

The cast body with a great care in the design and production of the ducts of the 5 chambers have made it possible to improve the spools allowing relatively high flow rate with low pressure drops ( $\Delta p$ ).


The spool rest positions are obtained by means of springs which centre it when there is no electrical impulse. The solenoids are constructed to DIN 40050 standards and are supplied by means of DIN 43650 ISO 4400 standard connectors which, suitably assembled, ensure a protection class of IP 65.

The solenoid coils are normally arranged for DIN 43650 ISO 4400 type connectors (standard version). On request, could be available the following coil connection variants: AMP Junior connections; flying leads connections, with or without integrated diode; Deutsch connections with bidirectional integrated diode.

The supply may be in either DC or AC form (with the use of a connector and rectifier) in most common voltage.

The valves are designed for use with DIN 51524 standard hydraulic mineral oils and it is recommended that filters should be fitted to ensure a maximum contamination level of class 10 in accordance with NAS 1638,  $\beta_{\rm pg} \ge 75$ ..

## PRESSURE DROPS



| Spool | Connections |        |        |     |                   |
|-------|-------------|--------|--------|-----|-------------------|
| type  | P→A         | P→B    | A→T    | В→Т | $P \rightarrow T$ |
| 01    | 4           | 4      | 6      | 6   |                   |
| 02    | 6           | 6      | 7      | 7   | 5                 |
| 03    | 4           | 4      | 7      | 7   |                   |
| 04    | 1           | 1      | 2      | 2   | 3                 |
| 05    | 6           | 6      | 4<br>5 | 4   |                   |
| 66    | 5           | 6<br>5 | 5      | 7   |                   |
| 06    | 5           | 5      | 7      | 5   |                   |
| 15    | 4           | 4      | 4      | 4   |                   |
| 16    | 5           | 5      | 6      | 6   |                   |
| 20*   | 5           | 5      | 6      | 6   |                   |
|       | Curve No.   |        |        |     |                   |

\* = with energized spool

The diagram at the side shows the pressure drop curves for spools during normal usage. The fluid used is a mineral based oil with a viscosity of 46 mm²/s at 40°C; the tests have been carried out at a fluid temperature of 40°C. For higher flow rates than those in the diagram the losses will be those expressed by the following formula:

$$\Delta p1 = \Delta p \times (Q1/Q)^2$$

where  $\Delta p$  will be the value for the losses for a specific flow rate Q which can be obtained from the diagram,  $\Delta p1$  will be the value of the losses for the flow rate Q1 that is used.

| ORDERING CODE |                              |  |  |  |
|---------------|------------------------------|--|--|--|
| AD            | Directional valve            |  |  |  |
| 2             | CETOP 2/NG4                  |  |  |  |
| E             | Electrical operator          |  |  |  |
| **            | Spool (tables next page)     |  |  |  |
| *             | Mounting (table 1 next page) |  |  |  |
| *             | Voltage (table 2 next page)  |  |  |  |
| **            | Variants (table 3 next page) |  |  |  |
| 3             | Serial No.                   |  |  |  |

# TAB. 1 MOUNTING

|     | STANDARD                      |  |  |
|-----|-------------------------------|--|--|
| С   | A O B Wb                      |  |  |
| D   | a/AB\                         |  |  |
| Е   | a/AOW                         |  |  |
| F   | W O B V                       |  |  |
| Spe | CIALS (WITH PRICE INCREASING) |  |  |
| G   | WAO L                         |  |  |
| н   | a/OBW                         |  |  |
| ı   | a/AO\b                        |  |  |
| L   | a/OB\b                        |  |  |
| М   | a/AB\b                        |  |  |

# Tab.3 - Variants

| VARIANT                              | CODE      |
|--------------------------------------|-----------|
| No variant (without connectors)      | S1(*)     |
| Viton                                | SV(*)     |
| Emergency button                     | ES(*)     |
| Rotary emergency button F            | P2(*)(**) |
| AMP Junior connection                | AJ(*)     |
| Solenoid with flying leads (250 mm)  | FL        |
| Solenoid with flying leads (130 mm)  |           |
| and integrated diode                 | LD        |
| Deutsch connection with bidir. diode | CX        |
| Coil 8W (only 24V)                   | 8W        |
| Other variants available on request. |           |

- (\*) Coils with Hirschmann and AMP Junior connection supplied without connectors. The connectors can be ordered separately, ch. I page 20.
- (\*\*) **P2 Emergency** tightening torque **max. 6÷9 Nm / 0.6 ÷ 0.9 Kgm** with CH n. 22

# Tab.2 - A09 (27 W) Coil

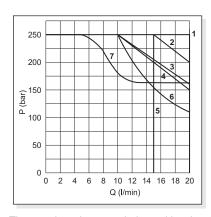
### DC VOLTAGE \*\* 12V 115Vac/50Hz M 24V 120Vac/60Hz Ν 48V\* with rectifier Р 110V\* 230Vac/50Hz Z 102V\* **₄** 240Vac/60Hz 205V\***←** X with rectifier Without DC coils

Voltage codes are not stamped on the plate, their are readable on the coils.

- Mounting type D is only for solenoid valves with detent
- In case of **mounting D** with detent, the supply to solenoid must be longer than 100 ms.
- The AMP Junior coil, the Deutsch coil with bidirectional diode and the coil with flying leads (with or without diode) coils are available in 12V or 24V DC voltage only.
- \* Special voltage
- \*\* Technical data see page I 4

## STANDARD SPOOLS

| Two solenoids, spring centred "C" mounting |          |          |                    |  |
|--------------------------------------------|----------|----------|--------------------|--|
| Spool<br>Type                              | MA O B W | Covering | Transient position |  |
| 01                                         |          | +        |                    |  |
| 02                                         |          | -        |                    |  |
| 03                                         |          | +        |                    |  |
| 04*                                        |          | -        |                    |  |
| 05                                         |          | +        |                    |  |
| 66                                         |          | +        |                    |  |
| 06                                         |          | +        |                    |  |


| ONE SOLENOID, SIDE A "E" MOUNTING |        |          |                    |  |
|-----------------------------------|--------|----------|--------------------|--|
| Spool<br>Type                     | a/ A O | Covering | Transient position |  |
| 01                                |        | +        |                    |  |
| 02                                |        | -        |                    |  |
| 03                                |        | +        |                    |  |
| 04*                               |        | -        |                    |  |
| 05                                |        | +        | MAR                |  |
| 66                                |        | +        |                    |  |
| 06                                |        | +        |                    |  |
| 15                                |        | -        | MHM                |  |
| 16                                |        | +        |                    |  |

| ONE SOLENOID, SIDE B "F" MOUNTING |              |          |                    |  |  |
|-----------------------------------|--------------|----------|--------------------|--|--|
| Spool<br>Type                     | W O B D      | Covering | Transient position |  |  |
| 01                                | WHITE        | +        |                    |  |  |
| 02                                | WHILE        | -        |                    |  |  |
| 03                                | w#11         | +        |                    |  |  |
| 04*                               | WHIALE       | -        |                    |  |  |
| 05                                | with the     | +        |                    |  |  |
| 66                                | WHITE IN THE | +        |                    |  |  |
| 06                                | wHTD         | +        |                    |  |  |
| 15                                | WXIII-       | -        | MHM                |  |  |
| 16                                | WXIII-       | +        |                    |  |  |

| Two solenoids "D" mounting |                             |                                         |  |  |  |
|----------------------------|-----------------------------|-----------------------------------------|--|--|--|
| Spool<br>Type              | Covering Transient position |                                         |  |  |  |
| 20*                        | a/ XIII Vb                  | + \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |  |  |  |

<sup>\*</sup> Spools with price increasing

# LIMITS OF USE (MOUNTING C-E-F)



| Spool | Curves No |
|-------|-----------|
| Type  |           |
| 01    | 1         |
| 02    | 3         |
| 03    | 1         |
| 04    | 4         |
| 05    | 1         |
| 66    | 1         |
| 06    | 1         |
| 15    | 1(7*)     |
| 16    | 2(6*)     |
| 20    | 5         |

 $(6^*)$  = 16 spool used as 2 or 3 way, follow the curve n°4  $(7^*)$  = with 8W coil

The tests have been carried out with solenoids at operating temperature and a voltage 10% less than rated voltage with a fluid temperature of 40°C. The fluid used was a mineral oil with a viscosity of 46 mm²/s at 40 °C. The values in the diagram refers to tests carried out with the oil flow in two directions simultaneously (e.g. from P to A and at the same time B to T). In case of valve 4/2 or 4/3 used with flow in one direction only, the limits of use could have variations which may even be negative.

Medium switching times. Energizing: 20 ms

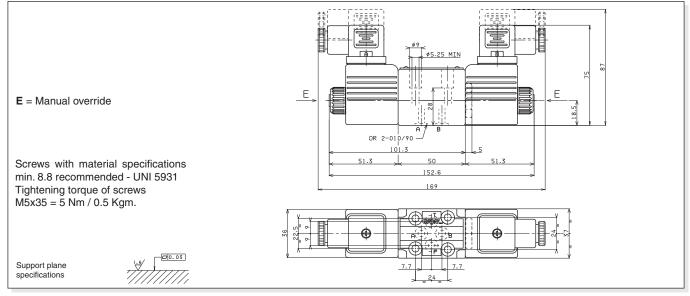
Medium switching timesEnergizing:20 msDe-energizing:40 ms

Tests have been carried out by spool normally closed with flow of 10 l/min at 125 bar and a 100% supply, warm standard coil and without any electronic components. These values are indicative and depend on the following parameters: the hydraulic circuit, the fluid used and the variation of pressure, flow and temperature.

NOTE: Limits of use are available for C, E, F mounting.

250 bar

250 bar

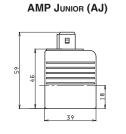

20 l/min

3 Hz



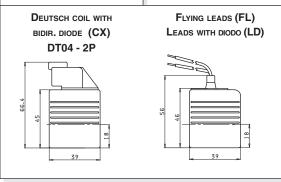
Max. pressure ports P/A/B Max pressure port T (dynamic) Max flow Max excitation frequency Duty cycle Fluid viscosity Fluid temperature Ambient temperature Max contamination level

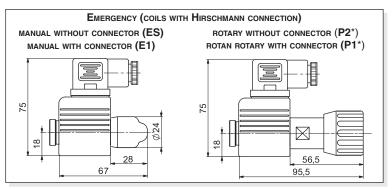
100% ED 10 ÷ 500 mm<sup>2</sup>/s -25°C ÷ 75°C -25°C ÷ 60°C class 10 in accordance with NAS 1638 with filter B<sub>os</sub>≥75 Weight with one DC solenoid 0,88 Kg Weight with two DC solenoids 1,1 Kg




# DC coils A09

Type of protection (in relation to connector used) IP 65 Number of cycle 18.000/h Supply tolerance ±10% Ambient temperature -30°C ÷ 50°C Duty cycle 100% ED Insulation class wire 0,215 Kg Weight


খ্যদ brevini • The AMP Junior coil, the Deutsch


coil with bidirectional diode and the coil with flying leads (with or without diode) coils are available in 12V or 24V DC voltage only.



| VOLTAGE     | Max winding temperature    | RATED     | RESISTANCE AT 20°C |
|-------------|----------------------------|-----------|--------------------|
| (V)         | (Ambient temperature 25°C) | POWER (W) | (Онм) ±7%          |
| 12V         | 123°C                      | 27        | 5.3                |
| 24V         | 123°C                      | 27        | 21.3               |
| 48V*        | 123°C                      | 27        | 85.3               |
| 102V(*)(**) |                            | 27        | 392                |
| 110V(*)(**) | 123°C                      | 27        | 448                |
| 205V(*)(**) | 123°C                      | 27        | 1577               |
| * Special   | voltages                   |           |                    |

The european low voltage directive is applied to electronical equipments used at a nominal voltages between 50 and 1000 VAC or 75 and 1500 VDC. In conformity with the low directive each part of the manifold or the subplate on which the valve is mounted should be connected to a protective earth with a resistence less than 0.1 ohms.





(\*) Emergency tightening torque max. 6÷9 Nm / 0.6 ÷ 0.9 Kgm with CH n. 22



## ADC.3.E...

| "A09" DC Coils      | Ch. I PAGE 7  |
|---------------------|---------------|
| STANDARD CONNECTORS | Ch. I PAGE 20 |

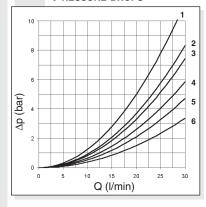
# ADC.3... DIRECTIONAL CONTROL VALVES CETOP 3 SOLENOID OPERATED WITH REDUCED OVERALL SIZE ## brevini

The ARON NG6 directional control valves are designed for subplate mounting with an interface in accordance with UNI ISO 4401 - 03 - 02 - 0 - 94 standard (ex CETOP R 35 H 4.2-4-03).

The use of solenoids with wet armatures allows an extremely safe construction completely dispensing with the need for dynamic seal. The solenoid tube is screwed directly onto the valve casting whilst the coil is kept in position by a ring nut.

The operation of the directional valve is electrical. The centring is achieved by means of calibrated length springs which, once the impulse is over, immediately reposition the spool in the neutral position. To improve the valve performance, different springs are used for each spool.

The solenoids, constructed with a protection class of IP65 in accordance with BS 5490 standards, are available in direct current form and different voltage. The electrical controls are equipped with an emergency manual control inserted in the tube.


The ADC.3 valve uses shorter solenoids than the standard AD.3.E to reduce the overall dimensions

The solenoid coils are normally arranged for DIN 43650 ISO 4400 type connectors (standard version). On request, could be available the following coil connection variants: AMP Junior connections; flying leads connections, with or without integrated diode; Deutsch connections with bidirectional integrated diode.

The recommended fluids are hydraulic mineral based oils in accordance with DIN 51524 and it is recommended that filters should be fitted to ensure a maximum contamination level of class 10 in accordance with NAS 1638,  $\Omega_{sc} > 75$ .

| Max. pressure ports P/A/B | /T 250 bar                              |
|---------------------------|-----------------------------------------|
| Max flow                  | 30 l/min                                |
| Max excitation frequency  | 3 Hz                                    |
| Duty cycle                | 100% ED                                 |
| Fluid viscosity           | 10 ÷ 500 mm <sup>2</sup> /s             |
| Fluid temperature         | -25°C ÷ 75°C                            |
| Ambient temperature       | -25°C ÷ 60°C                            |
| Max contamination level   | class 10 in accordance                  |
| with NA                   | AS 1638 with filter B <sub>25</sub> ≥75 |
| Weight with one DC soleno | oid 1,25 Kg                             |
| Weight with two DC soleno | oids 1,5 Kg                             |

# PRESSURE DROPS



| Spool   | Connections |     |     |     |     |
|---------|-------------|-----|-----|-----|-----|
| type    | P→A         | Р→В | A→T | В→Т | P→T |
| 01      | 4           | 4   | 4   | 4   |     |
| 02      | 6           | 6   | 6   | 6   | 6   |
| 03      | 4           | 4   | 6   | 6   |     |
| 04      | 3           | 3   | 2   | 2   | 5   |
| 15E-16E | 6           | 3   | 1   | 5   |     |
| 15F-16F | 3           | 6   | 5   | 1   |     |
| ·       | Curve No.   |     |     |     |     |

The diagram at the side shows the pressure drop curves for spools during normal usage. The fluid used is a mineral oil with a viscosity of 46 mm²/s at 40 C°; the tests have been carried out at a fluid temperature of 40 C°. For higher flow rates than those in the diagram, the losses will be those expressed by the following formula:

$$\Delta p1 = \Delta p \ x \ (Q1/Q)^2$$

where  $\Delta p$  will be the value for the losses for a specific flow rate Q which can be obtained from the diagram,  $\Delta p1$  will be the value of the losses for the flow rate Q1 that is used.

# ORDERING CODE

ADC
Directional valve
CETOP 3/NG6
E Electrical operator
Spool (tables at the side)
Mounting (table 1)
Voltage (table 2)

\*\*
Variants (table 3)
Serial No.

|     | TAB.1 - MOUNTIN                | G |
|-----|--------------------------------|---|
|     | Standard                       |   |
| C   | A O B W                        |   |
| ш   | a/AOW                          |   |
| F   | MOB Z                          |   |
| Spi | ECIALS (WITH PRICE INCREASING) |   |
| G   | WAO TO                         |   |
| Н   | a/OBW                          |   |

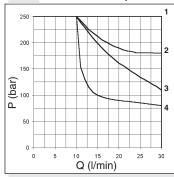
### STANDARD SPOOL \* Spools with price increasing Two solenoids, spring centred "C" Mounting Transient position Spoo Covering MAOBW type 01 02 $\square$ H $\square$ H $\square$ 03 04

| ONE SOLENOID, SIDE A "E" MOUNTING |         |          |                    |  |
|-----------------------------------|---------|----------|--------------------|--|
| Spool<br>type                     | A O W   | Covering | Transient position |  |
| 01                                |         | +        | XIIII              |  |
| 02                                | a/ X I  | -        |                    |  |
| 03                                |         | +        |                    |  |
| 04*                               |         | -        |                    |  |
| 15                                |         | -        |                    |  |
| 16                                | a/ XIII | +        |                    |  |

| 0             | ONE SOLENOID, SIDE B "F" MOUNTING |          |                    |  |  |  |
|---------------|-----------------------------------|----------|--------------------|--|--|--|
| Spool<br>type | M O B /P                          | Covering | Transient position |  |  |  |
| 01            | WHITE                             | +        |                    |  |  |  |
| 02            | WHITE                             | -        |                    |  |  |  |
| 03            | WIII                              | +        |                    |  |  |  |
| 04*           | WHINE                             | -        |                    |  |  |  |
| 15            | wXIII-                            | -        | XHII               |  |  |  |
| 16            | wXIII-                            | +        | XIIII              |  |  |  |

# TAB.2 - A09 (27 W) COIL

| DC voltage **                                                                |                                       |                                              |  |  |
|------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------|--|--|
| L<br>M<br>N                                                                  | 12V<br>24V<br>48V*                    | 115Vac/50Hz<br>120Vac/60Hz<br>with rectifier |  |  |
| P<br>Z<br>X<br>W                                                             | 110V*<br>102V*<br>205V*<br>Without DC | 230Vac/50Hz<br>240Vac/60Hz<br>with rectifier |  |  |
| Voltage codes are not stamped on the plate, their are readable on the coils. |                                       |                                              |  |  |


- \* Special voltage
- \*\* Technical data see page I 7

# TAB.3 - VARIANTS

| No variant (without connectors)            | S1(*)      |
|--------------------------------------------|------------|
| Viton                                      | SV(*)      |
| Emergency button                           | ES(*)      |
| Rotary emergency button                    | P2 (*)(**) |
| Rotary emergency button (180°)             | R5 (*)(**) |
| Variant with lever for emergency button    | LF(*)      |
| AMP Junior connection                      | AJ(*)      |
| Coil with flying leads (250 mm)            | FL         |
| Coil with flying leads (130 mm) with diode | LD         |
| Deutsch connection with bidirectional dic  | de CX      |
| Other variants available on request.       |            |

- (\*) Coils with Hirschmann and AMP Junior connection supplied without connectors. The connectors can be ordered separately, ch. I page 20.
- (\*\*) P2 and R5 Emergency tightening torque max. 6÷9 Nm / 0.6 ÷ 0.9 Kgm with CH n. 22
- The AMP Junior coil, the Deutsch coil with bidirectional diode and the coil with flying leads (with or without diode) coils are available in 12V or 24V DC voltage only.

# LIMITS OF USE (MOUNTING C-E-F)



| Spool | n°    |
|-------|-------|
| type  | curve |
| 01    | 2     |
| 02    | 1     |
| 03    | 3     |
| 04    | 3     |
| 15    | 4     |
| 16    | 1(4*) |

 $(4^*) = 16$  spools used for 3 way valve, follow the curve  $n^{\circ}4$ 

The tests have been carried out with solenoids operating temperature and a voltage 10% less than rated voltage with a fluid temperature of 50 C°. The fluid used was a mineral oil with a viscosity of 46 mm²/s at 40 degrees C. The values in the diagram refer to tests carried out with the oil flow in two directions simultaneously (e.g. from P to A and at the same time B to T).

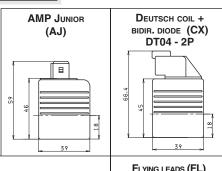
In the cases where valves 4/2 and 4/3 are used with the flow in one direction only, the limits of use could have variations which may even be negative (See curve No 4 and Spool No 16). The tests were carried out with a counter-pressure of 2 bar at T port.

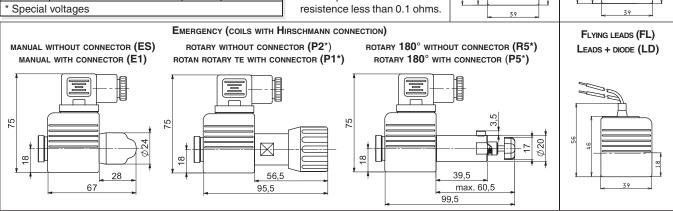
# **OVERALL DIMENSIONS** Ø9 ø5.5 OR 2-012/90 69.5 129.3 178.1 E = Manual override 19 0.4 Support plane specifications 0.03 Fixing screws UNI 5931 M5x30 10.4 with material specifications min. 8.8



Tightening torque 5 ÷ 6 Nm / 0.5 ÷ 0.6 Kgm

# A09 DC coils





| Type of protection              |              |
|---------------------------------|--------------|
| (in relation to connector used) | IP 65        |
| Number of cycle                 | 18.000/h     |
| Supply tolerance                | ±10%         |
| Ambient temperature             | -30°C ÷ 50°C |
| Duty cycle                      | 100% ED      |
| Insulation class wire           | Н            |
| Weight                          | 0,215 Kg     |

• The AMP Junior coil, the Deutsch coil with bidirectional diode and the coil with flying leads (with or without diode) coils are available in 12V or 24V DC voltage only.

| VOLTAGE     | MAX WINDING TEMPERATURE    | RATED | RESISTANCE<br>AT 20°C |
|-------------|----------------------------|-------|-----------------------|
| (V)         | (Ambient temperature 25°C) | (W)   | (Онм) ±7%             |
| 12V         | 123°C                      | 27    | 5.3                   |
| 24V         | 123°C                      | 27    | 21.3                  |
| 48V*        | 123°C                      | 27    | 85.3                  |
| 102V(*)(**) | 123°C                      | 27    | 392                   |
| 110V(*)(**) |                            | 27    | 448                   |
| 205V(*)(**) | 123°C                      | 27    | 1577                  |
|             |                            |       | ·                     |

\*\* The european low voltage directive is applied to electronical equipments used at a nominal voltages between 50 and 1000 VAC or 75 and 1500 VDC. In conformity with the low directive each part of the manifold or the subplate on which the valve is mounted should be connected to a protective earth with a resistence less than 0.1 ohms.





(\*) Emergency tightening torque max. 6÷9 Nm / 0.6 ÷ 0.9 Kgm with CH n. 22

# anon Bassaria

| CETOP 3/NG06        |               |  |  |  |
|---------------------|---------------|--|--|--|
| STANDARD SPOOLS     | Ch. I PAGE 10 |  |  |  |
| AD.3.E              | Ch. I page 11 |  |  |  |
| AD.3.EJ*            | Ch. I page 12 |  |  |  |
| AD.3.EKJ            | Ch. I page 13 |  |  |  |
| AD.3.V              | Ch. I page 14 |  |  |  |
| AD.3.L              | Ch. I page 15 |  |  |  |
| OTHER OPERATOR      | Ch. I page 16 |  |  |  |
| AD.3.P              | Ch. I page 17 |  |  |  |
| AD.3.O              | Ch. I page 17 |  |  |  |
| AD.3.M              | Ch. I page 18 |  |  |  |
| AD.3.D              | Ch. I page 18 |  |  |  |
| "D15" DC Coils      | Ch. I page 19 |  |  |  |
| "B14" AC SOLENOIDS  | Ch. I page 19 |  |  |  |
| STANDARD CONNECTORS | Ch. I page 20 |  |  |  |
| "LE" VARIANTS       | Ch. I page 21 |  |  |  |
| L.V.D.T.            | Ch. I PAGE 22 |  |  |  |

# DIRECTIONAL CONTROL VALVES CETOP 3/NG6-1/2 brevini

## Introduction

The ARON directional control valves NG6 are designed for subplate mounting with an interface in accordance with UNI ISO 4401 - 03 - 02 - 0 - 94 standard (ex CETOP R 35 H 4.2-4-03), and can be used in all fields on account of their high flow rate and pressure capacities combined with compact overall dimensions.

The use of solenoids with wet armatures allows a very practical, safe construction completely dispensing with dynamic seals; the solenoid tube is screwed directly onto the valve chest whilst the coil is kept in position by means of a lock nut.

The special, precise construction of the ports and the improvement of the spools enables relatively high flow rates to be accommodated with a minimal pressure drop ( $\Delta p$ ).

The operation of the directional valves may be electrical, pneumatic, oleodynamic, mechanical or lever.

The centre position is obtained by means of calibrated length springs which reposition the spool in the centre or end of travel position once the action of the impulse is over.

The solenoids are constructed with a protection class of IP66 to DIN 40050 standards and are available in either AC or DC form in different voltage and frequencies.

The new type DC coil "D15", of cause their high performance, allows to increasing the limits of use respect to last series.

All types of electrical control are available, on request, with different types of manual emergency controls.

The solenoid coils are normally arranged for DIN 43650 ISO 4400 type connectors; is available on request these variant coils: with AMP Junior connections, with AMP junior and integrated diode, with Deutsch DT04-2P connections or solenoid with flying leads. Connectors with built in rectifiers or pilot lights are also available.

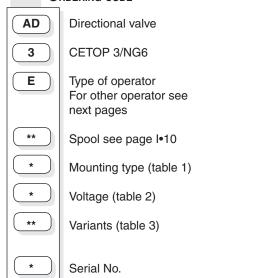
The valves are designed for use with DIN 51524 standard hydraulic mineral oils and it is recommended that filters should be fitted to ensure a maximum contamination level of class 10 in accordance with NAS 1638,  $\beta_{oz} \ge 75$ .

# 

Q (I/min)

The diagram at the side shows the pressure drop curves for spools during normal usage. The fluid used is a mineral oil with a viscosity of 46 mm²/s at 40°C; the tests have been carried out at a fluid temperature of 40°C. For higher flow rates than those in the diagram, the losses will be those expressed by the following formula:

$$\Delta p1 = \Delta p \ x \ (Q1/Q)^2$$


where  $\Delta p$  will be the value for the losses for a specific flow rate Q which can be obtained from the diagram,  $\Delta p1$  will be the value of the losses for the flow rate Q1 that is used.

| Spool | Connections |     |                  |                   |     |
|-------|-------------|-----|------------------|-------------------|-----|
| type  | P→A         | P→B | $A{ ightarrow}T$ | $B \rightarrow T$ | P→T |
| 01    | 5           | 5   | 5                | 5                 |     |
| 02    | 7           | 7   | 7                | 7                 | 6   |
| 03    | 5           | 5   | 6                | 6                 |     |
| 04    | 2           | 2   | 2                | 2                 | 4   |
| 44    | 1           | 1   | 2                | 2                 | 3   |
| 05    | 7           | 7   | 5                | 5                 |     |
| 06    | 5           | 5   | 7                | 5                 |     |
| 66    | 5           | 5   | 5                | 7                 |     |
| 07    |             | 2   | 6                |                   |     |
| 08    | 6           | 6   |                  |                   |     |
| 09    |             | 5   |                  | 5                 |     |
|       | Curve No.   |     |                  |                   |     |

| Spool  |           | Co  | nnectio           | ns  |     |
|--------|-----------|-----|-------------------|-----|-----|
| type   | P→A       | P→B | $A \rightarrow T$ | В→Т | P→T |
| 10     | 5         | 5   | 5                 | 5   |     |
| 11     | 5         |     |                   | 5   |     |
| 22     |           | 5   | 5                 |     |     |
| 12     |           | 5   |                   | 6   |     |
| 13     |           | 5   | 6                 | 6   |     |
| 14     | 4         | 3   | 3                 | 3   | 4   |
| 28     | 3         | 4   | 3                 | 3   | 4   |
| 15-19* | 5         | 5   | 6                 | 6   |     |
| 16     | 5         | 5   | 4                 | 4   |     |
| 17-21* | 3         | 4   |                   |     |     |
| 20*    | 4         | 4   | 4                 | 4   |     |
|        | Curve No. |     |                   |     |     |

(\*) Value with energized solenoid

# **ORDERING CODE**



4 = Only for RS - R6 - KJ - 7J variants

3 = Standard

# TAB.2 - VOLTAGE

|                                                                              | AC SOLENOID        | B14 **                        |
|------------------------------------------------------------------------------|--------------------|-------------------------------|
| Α                                                                            | 24V/50-60          | Hz                            |
| В                                                                            | 48V/50-60          | Hz                            |
| J                                                                            | 115V/50Hz          | - 120V/60Hz                   |
| Y                                                                            | 230V/50Hz          | - 240V/60Hz                   |
| K                                                                            | AC without of      | coils                         |
| Other                                                                        | voltages available | on request.                   |
| ١.                                                                           | DC COIL D15        | (30W) **                      |
| L<br>M                                                                       | 12V                | 115Vac/50Hz                   |
|                                                                              | 24V                | 120Vac/60Hz<br>with rectifier |
| V                                                                            | 28V*               | with rectilier                |
| N                                                                            | 48V*               |                               |
| Z                                                                            | 102V* ←            | 230Vac/50Hz                   |
| P                                                                            | 110V*              | 240Vac/60Hz                   |
| X                                                                            | 205V* <b>←</b>     | with rectifier                |
| W                                                                            | DC without         | t coils                       |
| Voltage codes are not stamped on the plate, their are readable on the coils. |                    |                               |

- \* Special voltage
- \*\* Technical data see page I 19
- AMP Junior coils (with or without diode) and coils with flying leads and coils type Deutsch, are available in 12V or 24V DC voltage only.
- •The coil with eCoat protection (RS variant) is available in 12V, 24V, 28V or 110V DC voltage only.

# STANDARD A O B Wh C D A B K A O W Ε WOB TH F SPECIALS (WITH PRICE INCREASING) MAO 0 B W Н I a/AO b L a/ 0 B \b

TAB.1- MOUNTING

• Mounting type D is only for valves with detent

a/AB b

M

• In case of **mounting D** with detent a maximum supply time of 2 sec is needed (only for AC coils).

Tab.3 - Variants

| Variant                                                                                                                      | Code            | •         | Page       |
|------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|------------|
| No variant (without connectors)                                                                                              | S1(*)           |           |            |
| Viton                                                                                                                        | SV (*)          |           |            |
| Emergency control lever for directional control valves type ADC3 and AD3E                                                    | LE-LF-AX-CE     | (*)♦      | I•21       |
| Emergency button                                                                                                             | ES(*)           |           | I•19       |
| Rotary emergency button                                                                                                      | P2(`*)          |           | I•19       |
| Rotary emergency button (180°)                                                                                               | R5(*)           |           | I•19       |
| Preset for microswitch (E/F/G/H mounting only) (see below note ◊)                                                            | MS(*)           | •         | I•11- I•15 |
| 5 micron clearance                                                                                                           | SQ(*)           | •         |            |
| Spool movement speed control (only VDC) with ø 0.3 mm orifice                                                                | 3S(*)           | •         | I•12       |
| Spool movement speed control (only VDC) with ø 0.4 mm orifice                                                                | JS(*)           | •         | I•12       |
| Spool movement speed control (only VDC) with ø 0.5 mm orifice                                                                | 5S(*)           | •         | I•12       |
| Spool movement speed control (only VDC) with ø 0.6 mm orifice                                                                | 6S(*)           | •         | I•12       |
| AMP Junior coil - for12V or 24V DC voltage only                                                                              | AJ(*)           |           | I•19       |
| AMP Junior coil and integrated diode - for12V or 24V DC voltage only                                                         | AD(*)           |           | I•19       |
| Coil with flying leads (175 mm) - for12V or 24V DC voltage only                                                              | SL              |           | I•19       |
| Hirschmann coil eCoat surface treatment - for 12V, 24V, 28V or 110V DC voltage only                                          | RS(*)           |           | I•19       |
| Deutsch DT04-2P connection eCoat surface treatment - for 12V, 24V DC voltage only                                            | Rô              |           | I•19       |
| High corrosion resistance valve - Hirschmann connector                                                                       | KJ              |           | I•13       |
| High corrosion resistance valve - Deutsch DT04-2P connector - for 12V, 24V DC voltage only                                   | , 7J            |           | I•13       |
| Deutsch DT04-2P coil - for12V or 24V DC voltage only                                                                         | CZ              |           | I•19       |
| Other variants available on request.                                                                                         |                 |           |            |
| ♦ = Maximum counter-pressure on T port: 8 bar - Microswitch type AM1107 code V7900000 • = Variant codes stamped on the plate | 1 can be ordere | ed separa | tely.      |

(\*) Coils with Hirschmann and AMP Junior connection supplied without connectors. The connectors can be ordered separately, ch. I page 20.

28\*

WILLIAM:

### Two solenoids, spring centred "C" mounting Spool type Covering Transient position MA OBW 01 MALTINE TO THE PARTY OF THE PAR Xiiiiiiii 02 MAHI M XHIHHHI 03 04\* 44\* 05 MITTE 66 **\*\*\*\*** 06 07\* + 08\* 09\* 10\* 22\* + 11\* + 12\* + 13\* MITTE STATE OF THE + 14\*

| 0             | ONE SOLENOID, SIDE A "E" MOUNTING |          |                    |  |  |
|---------------|-----------------------------------|----------|--------------------|--|--|
| Spool<br>type | a/ A O                            | Covering | Transient position |  |  |
| 01            |                                   | +        | XI.11.1            |  |  |
| 02            |                                   | -        | XHH                |  |  |
| 03            |                                   | +        |                    |  |  |
| 04*           | a/ III/w                          | -        |                    |  |  |
| 44*           | a/ III                            | -        |                    |  |  |
| 05            |                                   | +        | XXE                |  |  |
| 66            | a/ XII w                          | +        | XI.III             |  |  |
| 06            |                                   | +        |                    |  |  |
| 08*           |                                   | +        |                    |  |  |
| 10*           | a/ X                              | +        | EKK                |  |  |
| 12*           |                                   | +        |                    |  |  |
| 15            | a/ X                              | •        |                    |  |  |
| 16            | a/ X I                            | +        | X1.1               |  |  |
| 17            | a/ / i i                          | +        | ZI.III             |  |  |
| 14*           | a/ III                            | •        |                    |  |  |
| 28*           | a/ 11 m                           | •        |                    |  |  |

# DIRECTIONAL CONTROL VALVES STANDARD SPOOLS CETOP 3/NG6

খ্যদ brevini

# Note

- (\*) Spool with price increasing
- With spools 15 / 16 / 17 only mounting E / F are possible
- 16 / 19 / 20 / 21 spool not planned for AD.3.E...J\*
- For lever operated the spools used are different. Available spools for this kind of valve see AD3L...

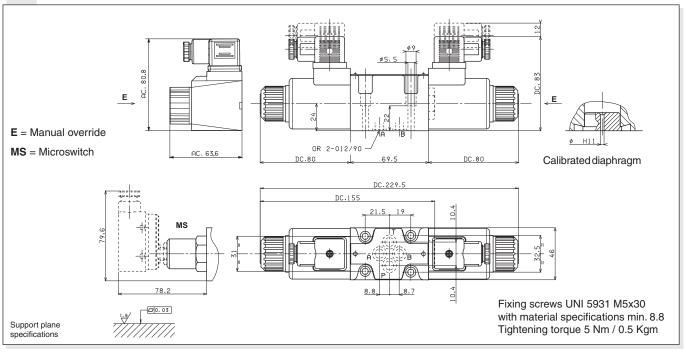
| 0             | ONE SOLENOID, SIDE B "F" MOUNTING |          |                    |  |  |  |
|---------------|-----------------------------------|----------|--------------------|--|--|--|
| Spool<br>type | MOB B                             | Covering | Transient position |  |  |  |
| 01            | WHITE B                           | +        |                    |  |  |  |
| 02            | WHILE                             | -        |                    |  |  |  |
| 03            | w#III                             | +        |                    |  |  |  |
| 04*           | WIIX                              | -        |                    |  |  |  |
| 44*           | WHINTS                            | -        |                    |  |  |  |
| 05            | WHITE I                           | +        |                    |  |  |  |
| 66            | WHITE WITH                        | +        |                    |  |  |  |
| 06            | WHITE I                           | +        |                    |  |  |  |
| 08*           | WIIII                             | +        |                    |  |  |  |
| 09*           | WHITE TO                          | +        |                    |  |  |  |
| 10*           | W##                               | +        |                    |  |  |  |
| 22*           | WHILE                             | +        |                    |  |  |  |
| 12*           | WHILE                             | +        |                    |  |  |  |
| 13*           | WHILE                             | +        |                    |  |  |  |
| 07*           | WHILE                             | +        |                    |  |  |  |
| 15            | wXIII_                            | -        | XHII               |  |  |  |
| 16            | wXIII_                            | +        |                    |  |  |  |
| 17            | WHITE WAR                         | +        |                    |  |  |  |
| 14*           | WHIXE                             | -        | EIXIX              |  |  |  |
| 28*           | WHX 10                            | -        |                    |  |  |  |

|               | Two solenoids "D" mounting |          |                    |  |  |
|---------------|----------------------------|----------|--------------------|--|--|
| Spool<br>type | a/ABWb                     | Covering | Transient position |  |  |
| 19*           | a/ XIII W                  | -        | XHII               |  |  |
| 20*           | a/ XII W                   | +        | XI.IX              |  |  |
| 21*           | a/TITE                     | +        |                    |  |  |

# AD.3.E... DIRECTIONAL CONTROL VALVES SOLENOID OPERATED CETOP 3/NG6 # brevini



A max. counter-pressure of 8 bar at T is permitted for the variant with a microswitch (MS). (\*) DC: Dynamic pressure allowed for 2 millions of cycles.


AC: Dynamic pressure allowed for 350.000 of cycles. For dynamic pressure of 100 bar are allowed 1 milion cycles.

| Max. pressure port P/A/B        | 350 bar                                  |
|---------------------------------|------------------------------------------|
| Max. pressure port T (for DC) s | see note (*) 250 bar                     |
| Max. pressure port T (for AC) s | see note (*) 160 bar                     |
| Max. flow                       | 80 l/min                                 |
| Max. excitation frequency       | 3 Hz                                     |
| Duty cycle                      | 100% ED                                  |
| Fluid viscosity                 | $10 \div 500 \text{ mm}^2/\text{s}$      |
| Fluid temperature               | -25°C ÷ 75°C                             |
| Ambient temperature             | - 25°C ÷ 60°C                            |
| Max. contamination level        | class 10 in accordance                   |
| with I                          | NAS 1638 with filter B <sub>25</sub> ≥75 |
| Weight with one DC solenoid     | 1,65 Kg                                  |
| Weight with two DC solenoids    | 2 Kg                                     |
| Weight with one AC solenoid     | 1,31 Kg                                  |
| Weight with two AC solenoids    | 1,72 Kg                                  |
|                                 |                                          |

| CALIBRATED |                |  |  |
|------------|----------------|--|--|
| DIA        | PHRAGMS (**)   |  |  |
| Ø mm       | Code           |  |  |
| blind      | M52.05.0023/4  |  |  |
| 0.5        | M52.05.0023/1  |  |  |
| 0.6        | M52.05.0023/6  |  |  |
| 0.7        | M52.05.0023/8  |  |  |
| 0.8        | M52.05.0023    |  |  |
| 1.0        | M52.05.0023/2  |  |  |
| 1.2        | M52.05.0023/3  |  |  |
| 1.5        | M52.05.0023/7  |  |  |
| 2.0        | M52.05.0023/10 |  |  |
| 2.2        | M52.05.0023/9  |  |  |
| 2.5        | M52.05.0023/5  |  |  |

(\*\*) For high differential pressure please contact our technical department.

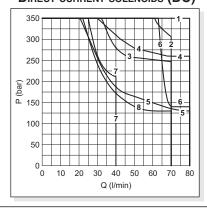
# **OVERALL DIMENSIONS**



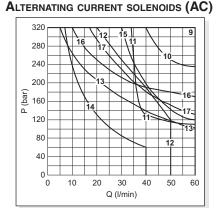
# LIMITS OF USE (MOUNTING C-E-F)

The tests have been carried out with solenoids at operating temperature and a voltage 10% less than rated voltage with a fluid temperature of 40°C. The fluid used was a mineral oil with a viscosity of  $46 \text{ mm}^2/\text{s}$  at 40°C. The values in the diagram refers to tests carried out with the oil flow in two directions simultaneously T = 2 bar (e.g., from P to A and the same time B to T). In the case where valves 4/2 and 4/3 were used with the flow in one direction only, the limits of use could have variations which may even be negative. Rest times: the values are indicative and depend on following parameters: hydraulic circuit, fluid used and variations in hydraulic scales (pressure P, flow Q, temperature T). The limit of use for AC solenoids were detected with 50 Hz power.

Direct current:


Energizing De-energizing

30 ÷ 50 ms. 10 ÷ 30 ms. Alternating current:


Energizing De-energizing

 $8 \div 30 \text{ ms.}$  $15 \div 55 \text{ ms.}$ 

# DIRECT CURRENT SOLENOIDS (DC)

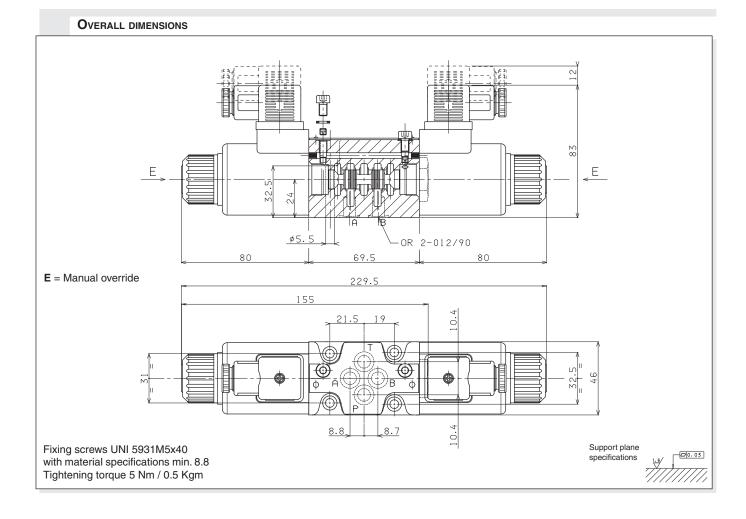


| Spool | Solenoids |    |  |
|-------|-----------|----|--|
| type  | DC        | AC |  |
| 01    | 1         | 9  |  |
| 02    | 1         | 9  |  |
| 03    | 3         | 10 |  |
| 04    | 2         | 15 |  |
| 44    | 1         | 9  |  |
| 05    | 1         | 16 |  |
| 06-66 | 5         | 13 |  |
| 11-22 | 4         | 17 |  |
| 14-28 | 7         | 12 |  |
| 15    | 8         | 14 |  |
| 16    | 6         | 11 |  |
|       | Curves    |    |  |



# Valves type AD3.E...J\* with spool movement speed control

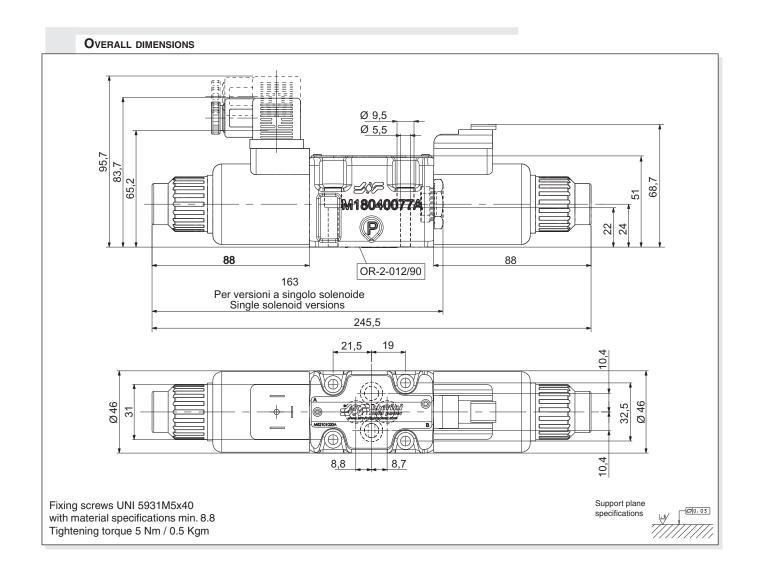
These ON-OFF type valves are used a lower spool movement speed than usual for conventional solenoid valves is required to prevent impacts which could adversely affect the smooth running of the system. The system consist of reducing the transfer section for the fluid from one solenoid to the other by means of calibrated orifices.


- This version can only be used with a direct current (DC) and also involves a reduction in the limits of use so that we suggest to always test the valve in your application
- To order AD.3...J\* version valves, specify the orifices code.
- The operation is linked to a minimum counter-pressure on T line (1 bar min.)
- The switching time referred to the spool travel detected by a LVDT transducer can vary for the NG6 valve from a minimum of 100 to a maximum of 300 ms depending on 5 fundamental variables:
- 1) Diameter of the calibrated orifices (see table)
- 2) Hydraulic power for clearance referring to flow and pressure values through valve  $\,$
- 3) Spool type
- 4) Oil viscosity and temperature
- 5) Counter-pressure at T line
- Possible mountings: C / E / F / G / H
- 16 / 19 / 20 / 21 spools not planned for AD.3.E...J\*

| Max. pressure ports P/A/B              | 320 bar                             |
|----------------------------------------|-------------------------------------|
| Max. pressure port T (*)               | 250 bar                             |
| Max. flow                              | 30 l/min                            |
| Max. excitation frequency              | 2 Hz                                |
| Duty cycle                             | 100% ED                             |
| Fluid viscosity                        | $10 \div 500 \text{ mm}^2/\text{s}$ |
| Fluid temperature                      | -25°C ÷ 75°C                        |
| Ambient temperature                    | -25°C ÷ 60°C                        |
| Weight with one DC solenoid            | 1,65 Kg                             |
| Weight with two solenoids DC solenoids | 2 Kg                                |

(\*) Pressure dynamic allowed for 2 millions of cycles.

| CALIBRATED         |             |                    |  |  |
|--------------------|-------------|--------------------|--|--|
| ORIFICES AVAILABLE |             |                    |  |  |
| ø (mm) M4x4 Code   |             |                    |  |  |
| 0.3                | M89.10.0028 | <b>3S</b> (J3+S1)* |  |  |
| 0.4                | M89.10.0029 | <b>JS</b> (J4+S1)* |  |  |
| 0.5                | M89.10.0006 | <b>5S</b> (J5+S1)* |  |  |
| 0.6                | M89.10.0030 | <b>6S</b> (J6+S1)* |  |  |


\* Old code





| AD.3.V              |            |
|---------------------|------------|
| "D15" DC Coils      | Cap.I • 19 |
| STANDARD CONNECTORS | Cap.I • 20 |
|                     |            |

- This variant has a Zinc-Nickel surface treatment on metallic parts for a higher corrosion resistance
- Coil windings are sealed and outer metal housing has eCoat surface treatment
- The complete valve outstand more than 700 hours exposure of Salt Spray Test (test performer according to UNI EN ISO 9227 and evaluation according to UNI EN ISO10289).
- The plastic blind retainer is assembled as standard to protect the end surface of solenoid tube



| AD.3.V              |               |
|---------------------|---------------|
| "D15" DC Coils      | Ch. I PAGE 19 |
| STANDARD CONNECTORS | Ch. I PAGE 20 |
| L.V.D.T.            | Ch. I page 22 |

# AD.3.V... CETOP 3/NG6 WITH PROXIMITY SENSOR L.V.D.T.

The single solenoid directional valves type AD.3.V are used in applications where the monitoring of the position of the spool inside the valve is requested to manage the machine safety cycles in according with the accident prevention legislation. These directional valves are equipped with an horizontal positioned inductive sensor on the opposite side of the solenoid, which is capable of providing the first movement of the valve when the passage of a minimum flow is allowed. Integrated in safety systems, these valves intercept actuator movements that could be dangerous for the operators and for the machine.

| Max. operating pressure ports P/A/   | 'B 350 bar                          |
|--------------------------------------|-------------------------------------|
| Max. operating pressure              |                                     |
| port T dynamic (see note*)           | 250 bar                             |
| Max. flow                            | 60 l/min                            |
| Max. excitation frequency            | 3 Hz                                |
| Duty cycle                           | 100% ED                             |
| Fluid viscosity                      | $10 \div 500 \text{ mm}^2/\text{s}$ |
| Fluid temperature                    | -25°C ÷ 75°C                        |
| Ambient temperature                  | -25°C ÷ 60°C                        |
| Type of protection                   |                                     |
| (in relation to connector used)      | IP 66                               |
| Weight                               | 1,7 Kg                              |
| (*) Pressure dynamic allowed for 2 m | illions of cycles.                  |

- Possible mountings: E / F / H
- The valve is supplied with DC solenoid only

|                                                                | PRE | SSUR            | E DR        | OPS       |    |                       |
|----------------------------------------------------------------|-----|-----------------|-------------|-----------|----|-----------------------|
| 20 — 18 — 16 — 14 — 14 — 12 — 10 — 10 — 10 — 10 — 10 — 10 — 10 | PRE | SSUR            | E DR        | OPS       | 1  | 2<br>3<br>4<br>5<br>6 |
| 0                                                              | 10  | <sup>20</sup> G | 30<br>(I/mi | 40<br>in) | 50 | 60                    |

| Connections |                  |                                                                                                                                                       |                                                       |                                                          |
|-------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|
| P→A         | Р→В              | A→T                                                                                                                                                   | В→Т                                                   | P→T                                                      |
| 5           | 5                | 5                                                                                                                                                     | 5                                                     |                                                          |
| 6           | 6                | 6                                                                                                                                                     | 6                                                     | 5                                                        |
| 5           | 5                | 6                                                                                                                                                     | 5                                                     |                                                          |
| 5           | 5                | 4                                                                                                                                                     | 4                                                     |                                                          |
| 1           |                  |                                                                                                                                                       |                                                       |                                                          |
| 5           | 5                | 5                                                                                                                                                     | 6                                                     |                                                          |
| 1           | 1                |                                                                                                                                                       |                                                       |                                                          |
| Curves No.  |                  |                                                                                                                                                       |                                                       |                                                          |
|             | 5<br>6<br>5<br>5 | $\begin{array}{c cccc} P \! \to \! A & P \! \to \! B \\ \hline 5 & 5 & 5 & \\ 6 & 6 & \\ 5 & 5 & 5 & \\ 1 & 3 & \\ 5 & 5 & \\ 1 & 1 & \\ \end{array}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | P→A P→B A→T B→T  5 5 5 5 5 6 6 6 6 6 5 5 6 5 5 5 4 4 1 3 |

The diagram at side shows the  $\Delta p$  curves for spool in normal usage. The fluid used is a mineral oil with a viscosity of 46 mm<sup>2</sup>/s at 40°C; the tests have been carried out at a fluid temperature of 40°C.

Tab1 - Standard spools for AD3V

Possible mounting: E / F / H

## **ORDERING CODE**

AD

Directional control valve

3

CETOP 3/NG6

٧

Directional valve with single solenoid and L.V.D.T. proximity sensor

\*\*\*

Spool and mounting (table 1)

Voltage (table 2)

\*\*

Variants (table 3)

2

Serial No.

registered mark for industrial environment with reference to the electromagnetic compatibility. European norms:

- EN50082-2 general safety norm industrial environment
- EN 50081-1 emission general norm - residential environment

with material specifications min. 8.8

Tightening torque 5 Nm / 0.5 Kgm

637----(IIIII)

# TAB.2 - VOLTAGE

| D15 Coil (30W) **                                                            |                                 |  |  |  |
|------------------------------------------------------------------------------|---------------------------------|--|--|--|
| L                                                                            | 12V                             |  |  |  |
| M                                                                            | 24V 115Vac/50Hz                 |  |  |  |
| ٧                                                                            | 28V*   120Vac/60Hz              |  |  |  |
| N                                                                            | 48V* with rectifier             |  |  |  |
| Z                                                                            | 102V*← 230Vac/50Hz              |  |  |  |
| Р                                                                            | 110V* 240Vac/60Hz               |  |  |  |
| R                                                                            | 205V*← with rectifier           |  |  |  |
| W                                                                            | Without DC coils and connectors |  |  |  |
| Voltage codes are not stamped on the plate, their are readable on the coils. |                                 |  |  |  |
|                                                                              |                                 |  |  |  |

- \* Special voltage

### Covering Transient position Spool 01E 01F WHITE B 02E 06H\* + 16E + 17F MITH \*\* Technical data see page I • 19 66F WHITE BELLEVIEW

(\*) Spool with price increasing

| OR 2-012/90 #5.5 106 88                                 |
|---------------------------------------------------------|
| E = Manual override                                     |
|                                                         |
| Fixing screws UNI 5931 M5x30  8.8   8.7   Support plane |

# Tab.3 - Variants

| No variant (without connectors)       | S1(*) |
|---------------------------------------|-------|
| Viton                                 | SV(*) |
| Emergency button                      | ES(*) |
| Without proximity connector LVDT      | S3    |
| Without coils and proximity connector | S4    |
| AMP Junior coil                       | AJ(*) |
| AMP Junior coil and integrated diode  | AD(*) |
| Coil with flying leads (175mm)        | SL    |
| Deutsch DT04-2P Coil type             | CZ    |
| Other variants available on request.  |       |

(\*) Coils with Hirschmann and AMP Junior connection supplied without connectors. The connectors can be ordered separately, ch. I page 20.

**□**0.03

# AD.3.L...

STANDARD SPOOLS

Ch. I PAGE 10

# AD.3.L... LEVER OPERATED CETOP 3/NG6 # brevini

Max. pressure ports P/A/B

Max. pressure port T

Max. flow

Lever angle Fluid viscosity

Fluid temperature

Ambient temperature

Max. contamination level

Weight

Weight M1 variant

320 bar 160 bar 60 l/min  $2 \times 17^{\circ}$ 

 $10 \div 500 \text{ mm}^2/\text{s}$ -25°C ÷ 75°C -25°C ÷ 60°C

class 10 in accordance with NAS 1638 with filter  $\beta_{25} \ge 75$  1,2 Kg

1,8 Kg

# **O**RDERING CODE

AD

Directional valve

3

CETOP 3/NG6

L

Lever operation

\*\*

Spool type (see table 1) Spool symbol see page I•10

Mounting type (see table 2)

**Z** = Valve with lever **X** = Valve without lever

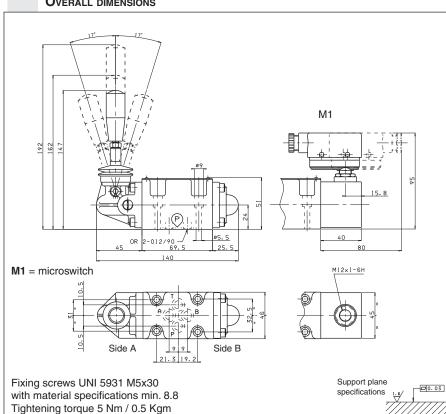


4


Variants (see table 3)

Serial No.

# TABLE 1 - SPOOLS TYPE


- For these valves spools are different from ones used on the other directional valves
- Available spools: 01 / 02 / 03 / 04 / 05 / 06 / 66 07 / 22 / 13 / 15 / 16 / 17

# TABLE 2 - MOUNTING TYPE



(1) For spools 15-16-17 the lever is mounted on site B

# **OVERALL DIMENSIONS**



# TABLE 3 - VARIANTS TABLE

| Variants                                                                                         | <b>C</b> ode <b>(</b> ♦) |
|--------------------------------------------------------------------------------------------------|--------------------------|
| No variant                                                                                       | 00                       |
| Viton                                                                                            | V1                       |
| Preset for microswitch Microswitch type AM1107 code V79000001 can be ordered sepa                | M1 (♦)<br>urately.       |
| Preset for microswitch + Viton                                                                   | MV (*)                   |
| With detent (*) (mechanical connection) (Springs are different from those for standard versions) | D1 (*)                   |
| Preset for microswitch + Detent (*)                                                              | MD (*)                   |
| Lever length 162 mm                                                                              | L1                       |
| Lever length 192 mm                                                                              | L2                       |
| ◆ Variant codes stamped on the                                                                   | plate                    |

(\*) max. 150.000 cycles.

# Coron Coron

| OTHER OPERATOR  |               |  |  |  |
|-----------------|---------------|--|--|--|
| STANDARD SPOOLS | Ch. I PAGE 10 |  |  |  |
| AD.3.P          | Ch. I PAGE 17 |  |  |  |
| AD.3.O          | Ch. I page 17 |  |  |  |
| AD.3.M          | Ch. I PAGE 18 |  |  |  |
| AD.3.D          | Ch. I PAGE 18 |  |  |  |

# DIRECTIONAL CONTROL VALVES OTHER OPERATOR CETOP 3/NG6

## INTRODUCTION

The ARON directional control valves NG6 are designed for subplate mounting with an interface in accordance with with UNI ISO 4401 - 03 - 02 - 0 - 94 standard (ex CETOP R 35 H 4.2-4-03), and can be used in all fields on account of their high flow rate and pressure capacities combined with compact overall dimensions.

The use of solenoids with wet armatures allows a very practical, safe construction completely dispensing with dynamic seals; the solenoid tube is screwed directly onto the valve chest whilst the coil is kept in position by means of a lock nut.

The special, precise construction of the ports and the improvement of the spools enables relatively high flow rates to be accommodated with a minimal pressure drop ( $\Delta p$ ).

The centre position is obtained by means of calibrated length springs which reposition the spool in the centre or end of travel position once the action of the impulse is over.

The valves are designed for use with DIN 51524 standard hydraulic mineral oils and it is recommended that filters should be fitted to ensure a maximum contamination level of class 10 in accordance with NAS 1638,  $\beta_{oc} \ge 75$ .

# ORDERING CODE

AD 3

Directional valve

CETOP 3/NG06

\*

Type of operator

**P** = Pneumatic

O = Oleodynamic

**M** = Mechanically

**D** = Direct mechanically

(For other operator see

past pages)

\*\*

Spool (see page I•10)

\*

Mounting type (tab.1)

Z

No voltage

\*\*

2

Variants: **00** = no variant

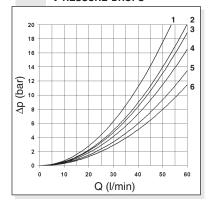
V1 = Viton

VI = VILOII

H1 = Marine version (for AD3P only)

**DI(\*)** = Internal draining (for AD3O only)

Serial No.


# Tab.1 Mounting

|      | Mooning                       |
|------|-------------------------------|
|      | Standard                      |
| С    | a A O B Wb                    |
| D    | a/ABWb                        |
| Е    | a/AOW                         |
| F    | W O B VP                      |
| Spec | CIALS (WITH PRICE INCREASING) |
| G    | MAOL                          |
| н    | a/OBW                         |
| ı    | a/AO\b                        |
| L    | a/ 0 B \b                     |
| M    | a/AB                          |

• In case of mounting D with detent a maximum supply time of 2 sec is needed (only for AC coils).

(\*) The DI variant is recommended in the environments characterised by the presence of dust or any type of contamination.

# PRESSURE DROPS



| Spool |           | Co  | onnectio | ons |     |
|-------|-----------|-----|----------|-----|-----|
| type  | P→A       | P→B | A→T      | В→Т | P→T |
| 01    | 5         | 5   | 5        | 5   |     |
| 02    | 6         | 6   | 6        | 6   | 5   |
| 03    | 5         | 5   | 6        | 6   |     |
| 04    | 1         | 1   | 2        | 2   | 4   |
| 05    | 5         | 5   | 5        | 5   |     |
| 06    | 5<br>5    | 5   | 6        | 5   |     |
| 66    | 5         | 5   | 5        | 6   |     |
| 07    |           | 4   | 6        |     |     |
| 08    | 6         | 6   |          |     |     |
| 09    |           | 5   |          | 5   |     |
| 10    | 5         | 5   | 5        | 5   |     |
|       | Curve No. |     |          |     |     |

| Spool   | Connections |        |     |     |     |
|---------|-------------|--------|-----|-----|-----|
| type    | P→A         | Р→В    | A→T | В→Т | P→T |
| 11      | 4           | _      | _   | 6   |     |
| 22      |             | 4      | 6   |     |     |
| 12      |             | 5<br>5 |     | 6   |     |
| 13      |             | 5      | 6   | 6   |     |
| 14      | 2           | 1      | 1   | 1   | 2 2 |
| 28      | 1           | 2      | 1   | 1   | 2   |
| 15 - 19 | 4           | 4      | 6   | 6   |     |
| 16      | 5           | 5      | 4   | 4   |     |
| 17 - 21 | 1           | 3<br>5 |     |     |     |
| 18      | 5           | 5      |     |     |     |
| 20      | 4           | 4      | 4   | 4   |     |
|         | Curve No.   |        |     |     |     |

The diagram at the side shows the pressure drop curves for spools during normal usage. The fluid used is a mineral oil with a viscosity of 46 mm²/s at 40°C; the tests have been carried out at a fluid temperature of 40°C. For higher flow rates than those in the diagram, the losses will be those expressed by the following formula:

 $\Delta p1 = \Delta p \times (Q1/Q)^2$ 

where  $\Delta p$  will be the value for the losses for a specific flow rate Q which can be obtained from the diagram,  $\Delta p1$  will be the value of the losses for the flow rate Q1 that is used.



Max. pressure ports P/A/B

Max. pressure port T

Max. flow

Max. flow

Minimum experiting pressure

2 + [0.027 x (pt\*)] here see note

Minimum operating pressure 2 + [0.027 x (pt\*)] bar - see noteMaximum operating pressure 20 bar

Fluid viscosity

Fluid temperature

Ambient temperature

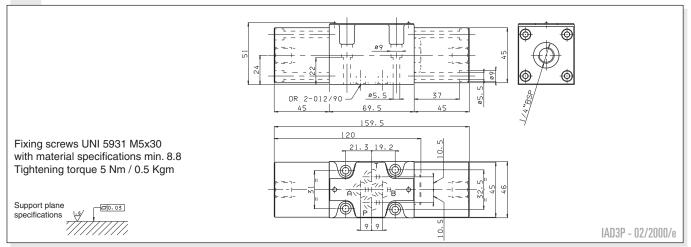
Max. contamination level

10 ÷ 500 mm²/s

-25°C ÷ 75°C

-25°C ÷ 60°C

class 10 in accordance with NAS 1638 with filter  $\beta_{25} \ge 75$  Weight single pilot 1,2 Kg


Weight twin pilot 1,2 Kg
Weight twin pilot 1,8 Kg

# • Possible mountings: C/D/E/F/G/H/I L/M

Ordering code see page before

(pt\*)=pressure at portT

## **OVERALL DIMENSIONS**



# AD.3.O... OLEODYNAMIC OPERATION TYPE VALVES CETOP 3/NG6

# খ্যদ brevini



The DI variant is recommended in the environments characterised by the presence of dust or any type of contamination.

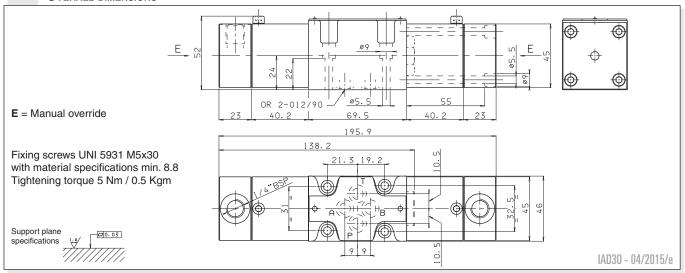
Max. pressure ports P/A/B 320 bar Max. pressure port T 160 bar Max. flow 60 l/min Minimum operating pressure 15 + [0.1 x (pt\*)] bar - see note Maximum operating pressure 250 har Fluid viscosity  $10 \div 500 \text{ mm}^2/\text{s}$ Fluid temperature  $0^{\circ}C \div 75^{\circ}C$ Ambient temperature -25°C ÷ 60°C Max. contamination level

class 10 in accordance with NAS 1638 with filter  $\beta_{25}$ >75 Weight single pilot 1,5 Kg Weight twin pilot 2,3 Kg

Further technical specifications (for DI variant only)

Minimum operating pressure [10 + (pt\*)] bar - see note
Maximum operating pressure 250 bar
Max. piloting leakage 1 l/min

• Possible mountings: C/D/E/F/G/H/I L/M


Ordering code see page before

(**pt**\*)= pressure at port "T".

Minimum pilot pressure depends on spool scheme, flow rate and pressure.

To allow the spool to return to nautral position, the pilot pressure must be below 3 bar.

# **OVERALL DIMENSIONS**



Weight



Max. pressure ports P/A/B 320 bar Max. pressure port T 160 bar 60 l/min Max. flow Minimum operating force - see note (\*) 2,5 Kg Maximum operating force - see note (\*\*) 13 Kg Cam angle 27° Fluid viscosity  $10 \div 500 \text{ mm}^2/\text{s}$ Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C Max. contamination level class 10 in accordance with NAS 1638 with filter  $\beta_{25}\!\!\geq\!\!75$  •Possible mountings: E/F/G/H

- Ordering code see page before
- Note:

i Kg

- (\*) In the absence of counter-pressure at port T
- (\*\*) with a pressure of 160 bar at port T

# **OVERALL DIMENSIONS**



# AD.3.D... DIRECT MECHANICALLY OPERATED TYPE VALVES CETOP 3/NG6

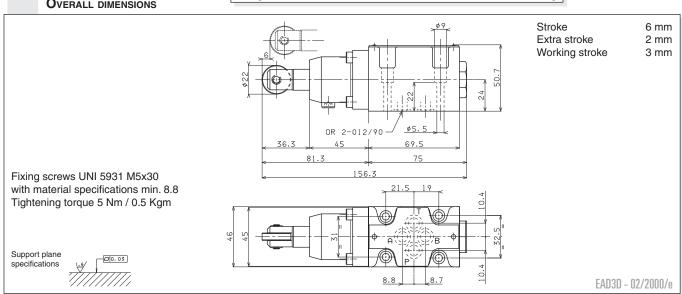




Max. pressure ports P/A/B Max. pressure port T Max. flow Operating force - see note (\*) Fluid viscosity Fluid temperature Ambient temperature

Max. contamination level

Weight


20 bar 60 l/min 6 Kg  $10 \div 500 \text{ mm}^2/\text{s}$ 0°C ÷ 75°C -25°C ÷ 60°C class 10 in accordance with NAS 1638 with filter  $\beta_{25} \ge 75$  1,5 Kg

- Possible mountings: E/F/G/H
- Ordering code see page before
- Note:

320 bar

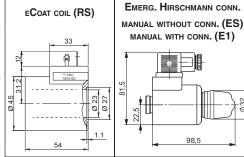
(\*) In absence of counter-pressure at port T

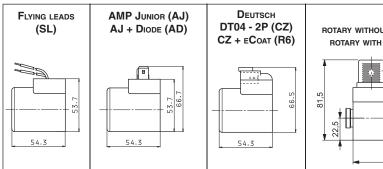
# **OVERALL DIMENSIONS**

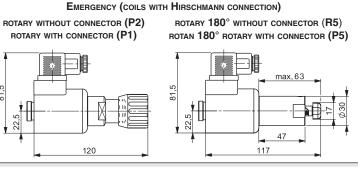




# "D15" DC COILS FOR CETOP 3


Type of protection (in relation to the connector used) IP 66 Number of cycles 18.000/h ±10% Supply tolerance Ambient temperature -54°C ÷ 60°C 100% ED Duty cycle Insulation class wire Weight 0,354 Kg • AMP Junior coils (with or without diode) and coils with flying leads and coils type Deutsch, are available in 12V or 24V DC voltage only.


খ্যদ brevini


• The pastic type coil (RS variant) is available in 12V, 24V, 28V or 110V DC voltage only.

| VOLTAGE   MAX WINDING TEMPERATURE |          | RATED      | RESISTANCE<br>AT 20°C |
|-----------------------------------|----------|------------|-----------------------|
|                                   | (W)      | (Онм) ±10% |                       |
| 12V                               | 110°C    | 30         | 4.8                   |
| 24V                               | 110°C    | 30         | 18.8                  |
| 28V*                              | 110°C    | 30         | 25.6                  |
| 48V*                              | 110°C    | 30         | 75.2                  |
| 102V(*)(**)                       | 110°C    | 30         | 340                   |
| 110V(*)(**)                       | 110°C    | 30         | 387                   |
| 205V(*)(**)                       | 110°C    | 30         | 1375                  |
| * Special                         | voltages |            |                       |

The european low voltage directive is applied to electronical equipments used at a nominal voltages between 50 and 1000 VAC or 75 and 1500 VDC. In conformity with the low directive each part of the manifold or the subplate on which the valve is mounted should be connected to a protective earth with a resistence less than 0.1 ohms.

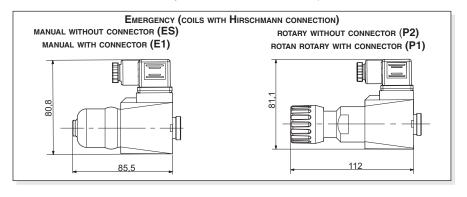


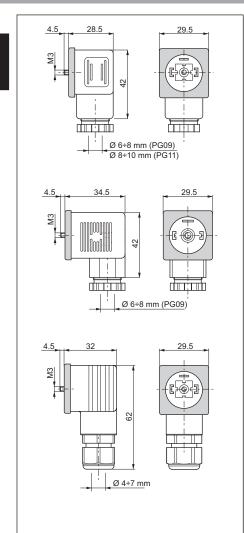






# "B14" AC SOLENOIDS FOR CETOP 3


# এদ brevini


Type of protection (in relation to the connector used) IP 65 Number of cycles 18.000/h Supply tolerance +10% / -10% Ambient temperature -30°C ÷ 60°C 100% ED Duty cycle Insulation class wire Н 0,436 Kg Weight

| Voltage<br>(V)          | Max. winding temperature (Ambient temperature 25°C) | RESISTANCE AT 20°C<br>(OHM) ±10% | RATED POWER.<br>(VA) | PICKUP CURRENT (A) |
|-------------------------|-----------------------------------------------------|----------------------------------|----------------------|--------------------|
| 24V/50Hz - 24V/60Hz     | 100°C - 96°C                                        | 1.7                              | 54 - 40              | 5.6 - 5            |
| 48V/50Hz - 48V/60Hz     | 112°C - 98°C                                        | 6.8                              | 45 - 34              | 5.3 - 5            |
| 115V/50Hz - 120V/60Hz * | 133°C - 101°C                                       | 32.5                             | 61 - 51              | 3.2 - 3.2          |
| 230V/50Hz - 240V/60Hz * | 120°C - 103°C                                       | 134                              | 62 - 52              | 1.6 - 1.6          |

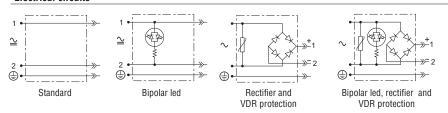
<sup>\*</sup> The european low voltage directive is applied to electronical equip- the manifold or the subplate on which the valve is mounted should be 75 and 1500 VDC. In conformity with the low directive each part of

ments used at a nominal voltages between 50 and 1000 VAC or connected to a protective earth with a resistence less than 0.1 ohms.

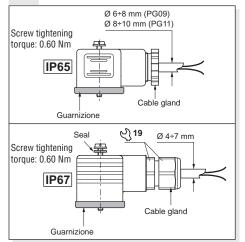




| Connector Protection level                    |      | Туре        | Cable gland | Code        |
|-----------------------------------------------|------|-------------|-------------|-------------|
|                                               |      | Black color | PG09        | V86 05 0002 |
| Standard                                      | IP65 | Grey color  | PG09        | V86 05 0004 |
| Standard                                      |      | Black color | PG11        | V86 05 0006 |
|                                               |      | Grey color  | PG11        | V86 05 0008 |
| Lens cover with pilot light (bipolar led) (*) | IP65 | 12 VAC/VDC  | PG09        | V86 10 0018 |
|                                               |      | 24 VAC/VDC  | PG09        | V86 10 0012 |
|                                               |      | 115 VAC/VDC | PG09        | V86 10 0020 |
|                                               |      | 230 VAC/VDC | PG09        | V86 10 0022 |


(\*) Don't use for proportional versions

| Connector                                                                                                              | Protection level | Туре        | Cable gland | Code        |
|------------------------------------------------------------------------------------------------------------------------|------------------|-------------|-------------|-------------|
| With rectifier (*) Inlet voltage 12÷230 VAC                                                                            | IP65             | Black color | PG09        | V86 20 0002 |
| Outlet voltage 9÷205 VDC                                                                                               |                  | Grey color  | PG09        | V86 20 0004 |
| Lens cover with pilot light (bipolar<br>led) and rectifier (*)<br>Inlet voltage 12÷230 VAC<br>Outlet voltage 9÷205 VDC | IP65             | 12 VAC      | PG09        | V86 25 0018 |
|                                                                                                                        |                  | 24 VAC      | PG09        | V86 25 0019 |
|                                                                                                                        |                  | 48 VAC      | PG09        | V86 25 0020 |
|                                                                                                                        |                  | 115 VAC     | PG09        | V86 25 0021 |
|                                                                                                                        |                  | 230 VAC     | PG09        | V86 25 0022 |

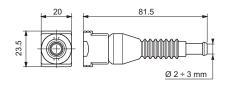

# (\*) Don't use for proportional versions

| Connector                  | Protection<br>level | Туре        | Cable gland | Code        |
|----------------------------|---------------------|-------------|-------------|-------------|
| With protection level ID67 | IP67                | Black color | _           | V86 28 0001 |
| With protection level IP67 |                     | Grey color  | _           | V86 28 0002 |

# **Electrical circuits**



## **E**LECTRICAL FEATURES OF CONNECTORS




| Description                         | IP65                | IP67                |
|-------------------------------------|---------------------|---------------------|
| AC rated voltage                    | Max. 250 V          | Max. 250 V          |
| DC rated voltage                    | Max. 300 V          | Max. 300 V          |
| Pin conctat nominal current         | 10A                 | 10A                 |
| Pin conctat max. current            | 16A                 | 16A                 |
| Max. section cable                  | 1.5 mm <sup>2</sup> | 1.5 mm <sup>2</sup> |
| Cable gland PG09 - M16x1,5          | Ø cable 6 ÷ 8 mm    | Ø cable 4 ÷ 7 mm    |
| Cable gland PG11 - G 1/2" - M20x1,5 | Ø cable 8 ÷ 10 mm   | _                   |
| Protection level                    | IP65 EN60529        | IP67 EN60529        |
| Insulation class                    | VDE 0110-1/89       | VDE 0110-1/89       |
| Operating temperature               | -40°C ÷ 90 C°       | -20°C ÷ 80 C°       |

The degrees of protection indicate is guaranteed only if the connectors were properly mounted with his original seals.

# **AMP JUNIOR CONNECTORS**





| Connector                            | Туре        | Cable section             | Pin conctat<br>max current | Code        |
|--------------------------------------|-------------|---------------------------|----------------------------|-------------|
| AMP Junior connector Timer 2 conctat | Black color | 0,5 ÷ 1,5 mm <sup>2</sup> | 10A                        | RKRC0808000 |



# (\*) VARIANTS

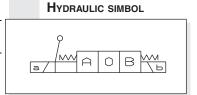
| Variant | Description                                                          |
|---------|----------------------------------------------------------------------|
| LE      | Standard coil with Hirschmann connection or without coil (W voltage) |
| LF      | Standard coil without Hirschmann connection(*)                       |
| AX      | AMP Junior coil(*)                                                   |
| CE      | Deutsch coil                                                         |

Other variants available on request.

(\*) Coils with Hirschmann and AMP Junior connection supplied without connectors. The connectors can be ordered separately, ch. I page 20.

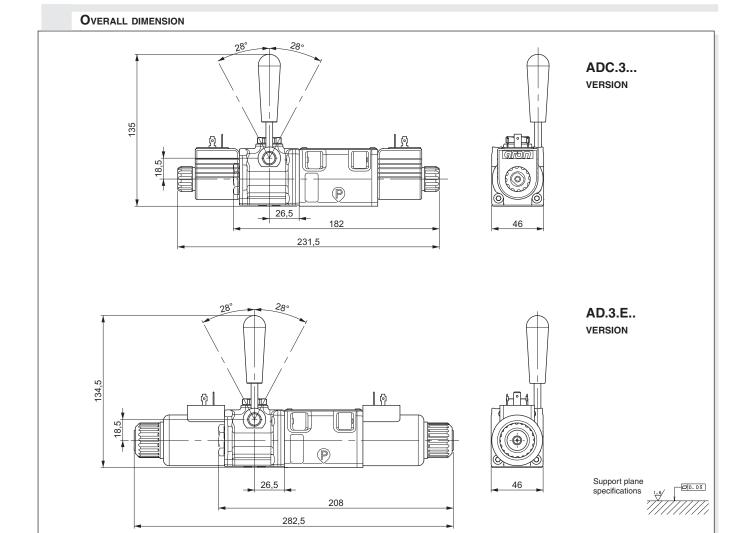

# Variants (\*) - Emergency control lever for directional control valves (ADC/AD.3.E) ## brevini

The emergency control lever for solenoid valves by Aron, represents a develop in terms of safety and flexibility among applied hydraulic components.


Thanks to his flexibility, the component was designed to be inserted between the valve body and the spool, providing total interchangeability between the different types of solenoid body valves manufactured by Aron. It is compatible with the standard CETOP 3 and stackable valves with threaded connections –G3/8" or 9/16-18UNF (SAE 6). The component is available for both directional control and proportional valves (for the last type of control please consult our Technical Department)

As an emergency lever applied to solenoid valves, the control can be used as a safety device in conformity with the industry standards , also playing an useful role in the event of power cuts. The control can be used in agricultural and mobile fields; the manual action can be used to carry out periodic maintenance work on mobile components of the vehicle , in perfectly safe working conditions.

| Max operating pressure port T:      |         |
|-------------------------------------|---------|
| dynamic                             | 160 bar |
| static                              | 210 bar |
| Max operating pressure port P       |         |
| for series connection configuration | 160 bar |
|                                     |         |




• Spools type: 01/02/03\*/04/16/17/66

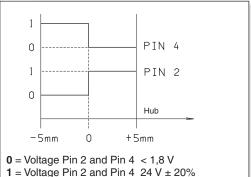


\* The spool 03 is allowed only on AD3E. Not permitted with ADC3

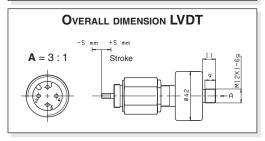
| MOUNTING COMPATIBILITY                  |                           |      |         |
|-----------------------------------------|---------------------------|------|---------|
| CODE VALVE                              | DESCRIPTION               | Coil | Voltage |
| ADC.3                                   | Directional control valve | A09  | 27 W    |
| AD.3.E Directional control valve D15 38 |                           | 30 W |         |

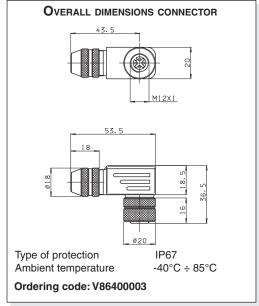




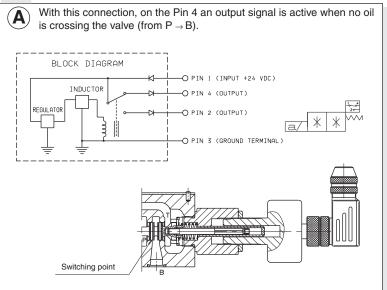

# PROXIMITY SENSOR TYPE L.V.D.T.

Supply voltage 24 V ± 20% Polarity reversal protection max 300 V Switching point hysteresis ≤ 0,06 mm Reproducibility ± 0,02 mm  $\leq$  250 mA Max. output current Protection against short circuit yes -25°C ÷ 85°C Operating temperature Connection type connector Protection according to DIN IP65 315 bar Max. pressure

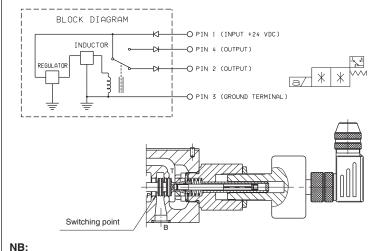

# CE certificate according to 89/336/EEC EMC is provided. A screened cable is needed.


The LVDT position transducers allow to check exactly the very instant when the passage of a minimum flow is allowed.

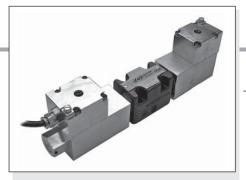
# FUNCTIONAL DIAGRAM ON PIN 2 AND 4




# 1 = Voltage Pin 2 and Pin 4 24 V $\pm$ 20%







# **ELECTRICAL CONNECTIONS LVDT**



With this connection, on the Pin 4 there is no output signal when oil is crossing the valve (from  $P \rightarrow B$ ).



connecting the output to Pin 4 or Pin 2 the type of contact, normally closed or open, can be chosen.



| AD.3.XG                  |               |  |
|--------------------------|---------------|--|
| ATEX DIRECTIVE           | Ch. I Page 23 |  |
| ATEX CLASSIFICATION      | Ch. I Page 24 |  |
| SERIES AD.3.XG           | Ch. I Page 25 |  |
| TECHNICAL SPECIFICATIONS | Ch. I Page 25 |  |
| ORDERING CODE            | Ch. I Page 25 |  |
| TAB.1 ASSEMBLY           | Ch. I Page 26 |  |
| Tab. 2 Voltages          | Ch. I Page 26 |  |
| Tab.3 Spool              | Ch. I Page 26 |  |
| LIMITS OF USE            | Ch. I Page 26 |  |
| IDENTIFICATION NAMEPLATE | Ch. I Page 27 |  |
| SAFETY INSTRUCTIONS      | Ch. I Page 27 |  |
| OVERALL DIMENSIONS       | Ch. I Page 28 |  |

# AD.3.XG... DIRECTIONAL CONTROLE CETOP 3 IN ACCORDANCE WITH 94/9/CE ATEX DIRECTIVE ## brevini

# 94/9/CE ATEX EC DIRECTIVE (EXPLOSIVE ATMOSPHERE)

## INTRODUCTION

Since 30/06/2003 products introduced into the market (or started-up) inside the EU, destined to be used in potentially explosive environments, must be in compliance with the 94/9/EC Directive through special marking. The directive regarding ATEX products 94/9/ EC is therefore the regulation instrument that the European Union uses to obtain legislative harmonisation between the States and guarantee free circulation of goods inside the European Community itself.

The directive affirms that to eliminate obstacles from commerce it is necessary to guarantee a high level of protection and, with this aim, define the essential requirements on the subject of safety and health. The dispositions base themselves on the principle of the "new approach" (NA), for which the essential safety requirements of products must be established depending on the risk evaluation concurrent at the time of their use.

The 94/9/EC Directive is applied to the manufacture specifications of all those products (electrical and not) destined to be used in potentially explosive environments caused, by the dangers deriving from the presence of dust or gas, with the scope of reducing the risk of use that could be derived.

The term **product** refers to appliances, protection systems, devices, components and relative combinations, as defined in 94/9/EC Directive.

The term appliances intends machines, materials, fixed or mobile devices, control elements, instruments detection and prevention systems. Alone or combined these are destined for production, transport, deposit, measurement, adjustment and conversion of energy, and to the transformation of material and which, by way of the powerful triggering sources, risk causing an explosion. As a consequence, even intrinsically safe appliances re-enter within the field of application of the directive.

Ther combination of two or more appliance parts, as well as any other components, makes up a whole unit that can be considered a product and therefore re-enters within the field of application of the 94/9/EC Directive. If the whole unit requires adequate installation (therefore it is not immediately ready for use) the attached instructions should guarantee maintenance of compliance to the 94/9/EC Directive on installation, without further evaluations of conformity. The installer must follow the instructions correctly.

When a combination of appliances leads to a **plant** this may not re-enter within the field of application of the directive. Each part must be certified and in compliance with the directive (as well as being subject to the relative evaluation of conformity, EC marking, etc.).

The plant manufacturer must therefore presume the conformity of the various components (each supplied with conformity certificate released by the respective manufacturer) and limit their evaluation only to any additional risks that become important in the final combination. Nevertheless, if the plant manufacturer inserts parts without EC marking or components not supplied with the certificate it will be obligatory to carry out further conformity evaluation of the whole unit.

The 94/9/EC Directive envisions **obligations of the person** who introduces products into the market and/or starts them up, whether they are manufacturer's, his agent's, importer's or any other responsible person. The dispositions and obligations envisioned by the directive for introduction into the market have been applied, since 30 June 2003, to every individual product, independently from the date and place of manufacture. It is the manufacturers responsibility to guarantee conformity of all products, where these re-enter within the field of application of the directive.

The directive does not govern the use of the appliances; rather it establishes that the products can only be used if in compliance with safety requirements at the time of their introduction into the market or of their start-up. "Start-up" means the first use of the products subject of the 94/9/EC Directive on EU territory by a final user. Nevertheless, a product that is immediately ready for use and does not need assembly or installation, and whose distribution conditions (deposit, transport, etc.) are not important for performance, is considered started-up at the time of introduction into the market.

Among the main potential causes/sources of triggering an explosion, such as sparks, flames, electric arcs etc.., maximum surface temperature also plays an important role. The dispositions of the directive establish evaluation criteria for the maximum temperature admissible depending on the type of explosive atmosphere in which the appliance must operate.

For environments characterised by the presence of qas-air, some temperature values are supplied to which the appliances must refer. They are indicated by the letter T followed by a number. The criterion to apply is that for which the temperature of the appliance must never exceed 80% of the value indicated for its own category.

For environments characterised by the presence of dust-air, to prevent setting on fire of the airborne dust, the surface temperature of the appliances must be decidedly lower than the predictable temperature of catching fire of the air+dust mixture. Therefore, during planning the maximum working surface temperature must be declared directly (in degrees centigrade).

Increases in temperature deriving from an accumulation of heat and chemical reactions must also be taken into consideration. The thickness of the deposited layer of dust must also be considered and, if necessary, limit the temperature, to prevent an accumulation of heat.

# 1

# CLASSIFICATIONS OF AREA - MIX - GROUP AND RELATIVE CATEGORY - ACCORDING TO ATEX DIRECTIVES

The 94/9/EC Directive is a "new approach" directive based on risk analysis. Its objective is to minimise the risks deriving from the use of some products indoors or in relation to a potentially explosive atmosphere. The probability of an explosive atmosphere manifesting must be considered not only as "one-off" or from a static point of view: all operative conditions that can derive from the transformation process must be taken into consideration.

- An **explosive atmosphere** for the 94/9/EC Directive is made up from a mixture of inflammable substances (as gas, vapours, mists and dust), with air, in determined atmospheric conditions in which, after triggering, the combustion propagates together with the unburned mixture.
- An atmosphere susceptible to transforming into an explosive atmosphere because of local and/or operative conditions is defined potentially explosive atmosphere.

Explosive atmospheres are not only formed in the presence of obviously dangerous substances such as fuel, solvents etc., but also in the presence of apparently harmless products such as wood dust, metal dusts, flour, grain, sugar etc. Therefore it can concern not only industries in the chemical or oil industry sectors, but also industries in the foodstuffs, textile, manufacturing etc.. It is important to consider that to re-enter within the 94/9/EC Directive a product must be applied in presence of one or more of the characteristic elements listed above: presence of inflammable substances and air, in atmospheric conditions that favour the propagation of combustion. The directive does not define the atmospheric conditions itself. The relative norms indicate a temperature range, but this does not exclude that the products may be planned and evaluated specifically to occasionally function outside of this range, introducing the opportune construction transformations.

To define a **conformity evaluation procedure** adequate for the directive, the Manufacturer must, on the basis of the declared use, establish the products functioning conditions (this means to say, envision the type of working area, the type of explosive mixture with which it will come into contact and the level of probability that an explosive atmosphere verifies itself); successively he must establish to which Group the product belongs and individualise the category inside the Group.

With the Atex 99/92/EC Directive (For the safety of workers) the working conditions in which products in compliance with Atex 99/4/ EC Directive will function are indicated here. These are expressed in "Areas" and defined according to the level of probability that a potentially explosive atmosphere is verified, respectively for every type of atmosphere (gas-air mix or dust-air mix).

Area 0 and 20 Places in which an explosive atmosphere is constantly present or present for long periods or frequently.

Area 1 and 21 Places in which an explosive atmosphere is probable. It is verified in normal functioning and exercise conditions.

Area 2 and 22 Places in which an explosive atmosphere has low probability of being verified or, if it occurs only lasts for a brief period of time.

# GAS-AIR-TYPE EXPLOSIVE MIXTURE (G)

The products destined to work in environments characterised by this type of explosive atmosphere will be respectively indicated for Area **0**, **1 or 2** depending on the Group and category of origin (see below) and are marked with the letter G.

# DUST-AIR-TYPE EXPLOSIVE MIXTURE (D)

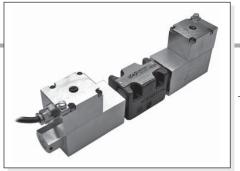
The products destined to work in environments characterised by this type of explosive atmosphere will be respectively indicated for Area **20, 21 or 22** depending on the Group and category of origin (see below) and are marked with the letter D.

# **GROUP I**

Includes the appliances destined to be used in underground jobs in the mines and their surface plants, exposed to the risk of the release of firedamp and/or combustible dust. The subdivision into categories depends on the fact if the power supply must be interrupted or not if an explosive atmosphere manifests due to a mixture of air and gas, vapours mists (D) or a mixture of air and dust (G).

Category M1 Very high protection level. These products must be able to remain operative, for safety reasons, in the presence of an explosive atmosphere and present specific performances or protection configurations for breakdown in case of explosion.

Category M2 High protection level. The power supply to these products must be interrupted in the presence of an explosive atmosphere. Protection means must be incorporated to guarantee the level of protection during normal functioning and also in oppressive working conditions or resulting from great stressi.


# GROUP II

Includes appliances destined to be used in different environments (from the mines) in which there is a probability that an explosive atmosphere manifests itself. Their subdivision into categories depends on two factors: the place, where the product will be used and if the probability that a potentially explosive atmosphere, owing to the mixture of air and gas, vapours, mists (D) and the mixture of air and dust (G), comes about in a constant or occasional manner and if it does occur, does this possibility remain for long or brief period of time.

Category 1 Very high protection level. These products must be planned to function in compliance with operative parameters established by the Manufacturer in environments in which there is a high probability that explosive atmospheres are always detected or manifest often or for long periods of time. They must present specific performances or protection configurations for breakdown in case of explosion.

Category 2 High protection level. These products must be planned to function in compliance with operative parameters established by the Manufacturer in environments in which there is a high probability that explosive atmospheres can manifest. Protection against explosions relative to this category must function in a way to guarantee the required safety level even in the presence of functioning defects of the appliances or in dangerous operative conditions, which frequently must be taken into consideration.

Category 3 Normal protection level. These products must be planned to function in compliance with operative parameters established by the Manufacturer in environments in which there is a slight probability that explosive atmospheres can manifest, and however only rarely or for a brief period of time. This type of product belonging to the category in question must guarantee the safety level required in normal functioning conditions.



| AD.3.XG                  |               |  |
|--------------------------|---------------|--|
| ATEX DIRECTIVE           | Ch. I Page 23 |  |
| ATEX CLASSIFICATION      | Ch. I Page 24 |  |
| SERIES AD.3.XG           | Ch. I Page 25 |  |
| TECHNICAL SPECIFICATIONS | Ch. I Page 25 |  |
| ORDERING CODE            | Ch. I Page 25 |  |
| TAB.1 ASSEMBLY           | Ch. I Page 26 |  |
| Tab. 2 Voltages          | Ch. I Page 26 |  |
| Tab.3 Spool              | Ch. I Page 26 |  |
| LIMITS OF USE            | Ch. I Page 26 |  |
| IDENTIFICATION NAMEPLATE | Ch. I Page 27 |  |
| SAFETY INSTRUCTIONS      | Ch. I Page 27 |  |
| OVERALL DIMENSIONS       | Ch. I Page 28 |  |

# AD.3.XG... DIRECTIONAL CONTROLE CETOP 3 IN ACCORDANCE WITH 94/9/CE ATEX DIRECTIVE #F brevini

SOLENOID VALVES FOR USE IN WORKPLACES WHERE EXPLOSIVE ATMOSPHERES MAY OCCUR DUE TO THE PRESENCE OF GAS, VAPOUR OR MIST AND DUST.

AD3.XG solenoid valves are classified in:

Group II appliances (to be used in workplaces, apart from mines, where there is the probability of explosive atmospheres);

category 2 (high protection level), for use in workplaces where it is probable that an explosive atmosphere may form in normal working conditions and classified by the presence of explosive mixtures of gas-dust type (letter GD) for zones 1, 2 and 21, 22.

These valves are therefore designed especially and manufactured in compliance with the ATEX 94/9/EC Directive and according to European regulations EN 1127-1, EN 13463-1 and EN 13463-5.

Belonging to the "NG06 direction control" of Aron range, these valves are prepared for platemounting with attachment surface in compliance with UNI ISO 4401 - 03 - 02 - 0 - 94 (former CETOP R 35 H 4.2-4-03). They are activated electrically and the centre position is ensured by springs with gauged lengths, which once the pulse or command ceases, re-position the spool in the centre or at the end of travel position.

The coils used for these valves are subject to separate conformity certification, according to the ATEX Directive (EC-type). For further specifications, please consult the documents that are always supplied with the valve.

Before marking and marketing the valves of the AD3XG series, undergo tests and inspections according to the in-house Manufacturing System and to the Certified Company Quality System in compliance with ISO 9001:2008. All of the AD3XG valve series undergo 100% functional testing. These tests and inspections guarantee that the products sold comply with all the information reported in the Technical Specifications File registered and declared by marking with AD3X/ATEX/10.

# **O**RDERING CODE

ΑD **Directional Control Valve** 

CETOP 3/NG06 3

> Solenoid valves built pursuant to ATEX Directive-94/9/EC. With coils in explosion-proof version (Ex d) and IECEx conformity marked

Temperature Class

**T4** (T<sub>sur</sub> < 135 °C)

**T6** (T<sub>sur</sub> < 85 °C)

Spools

XG

01/02/03/04/16 (tab.3). For further hydraulic diagrams, contact Brevini Fluid Power Customer Service

Assembly

C/E/F/G/H (tab.1). For further assembly instructions, contact Brevini Fluid Power Customer Service

Voltage (tab.2)

Variants

**00** = None

V1 = Viton

LE = Emergency lever

Serial number

# **TECHNICAL SPECIFICATIONS**

| Description                     | AD3XG T4                      | AD3XG T6                           |
|---------------------------------|-------------------------------|------------------------------------|
| Valve marking                   | <b>C €</b>                    | <b>(€</b> 🖾 <sub>II 2 GD cT6</sub> |
| Max. pressure on lines P/A/B    | 350 bar                       | 350 bar                            |
| Max. pressure on line T (dynami | c) 250 bar                    | 250 bar                            |
| Max. flow rate                  | 80 l/min                      | 80 l/min                           |
| Max.excitation frequency        | 3 Hz                          | 3 Hz                               |
| Duty cycle                      | 100%ED                        | 100%ED                             |
| Hydraulic fluids                | mineral oils DIN 51524        | mineral oils DIN 51524             |
| Fluid viscosity                 | 10 ÷ 500 mm <sup>2</sup> /s   | 10 ÷ 500 mm <sup>2</sup> /s        |
| Fluid temperature (*)           | -30°C ÷ +70°C                 | -30°C ÷ +70°C                      |
| Ambient temperature             | -40°C ÷ +80°C                 | -40°C ÷ +50°C                      |
| Max. contamination level        | ISO 4406:1999: class 21/19/16 | ISO 4406:1999: class 21/19/16      |
| (filter ß25 ≥ 75)               | NAS 1638: class 10            | NAS 1638: class 10                 |
| Weight (one solenoid)           | 3 kg                          | 3 kg                               |
| Weight (two solenoids)          | 5 kg                          | 5 kg                               |
| Coil rated power                | 8,5 W                         | 8,5 W                              |
| Degree of protection            | IP 67                         | IP 67                              |
| Power supply tolerance          | ±10%                          | ±10%                               |
| Power supply cable              | standard length 3m            | standard length 3m                 |
|                                 | with cable gland              | with cable gland                   |
| Coil marking (**):              | consult                       | documents supplied with coil       |
| Surface temperature             | < 135°C                       | < 85°C                             |

<sup>(\*)</sup> AD3XG valves have been certified for minimum fluid temperatures up to -30°C. Please contact our Technical Dept. for applications at fluid temperatures < -25°C.

t\*) Coil is provided with marking for protection class according to Explosion Protection Directive ATEX-94/9/EC and (\*\*) Coil is provided with marking isometricate of conformity mark

# TAB.1 ASSEMBLY

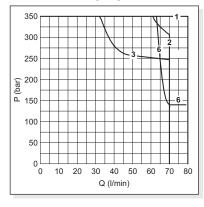
| STANDARD |                  |                       |
|----------|------------------|-----------------------|
| С        | a A O B W        | Two solenoids centred |
| Е        | a/AOW            | One solenoid (side A) |
| F        | WOB L            | One solenoid (side B) |
|          | Specials (with i | ncreased price )      |
| G        | WAO VE           |                       |
| Н        | a/OBW            |                       |

# TAB.2 VOLTAGES

| AC Voltage                                             | for AD3XG      |  |
|--------------------------------------------------------|----------------|--|
| Α                                                      | 24V 50Hz/60Hz  |  |
| В                                                      | 48V 50Hz/60Hz  |  |
| С                                                      | 110V 50HZ/60Hz |  |
| D                                                      | 220V 50Hz/60Hz |  |
| 1                                                      | 230V 50Hz/60Hz |  |
| DC Voltage                                             | for AD3XG      |  |
| L                                                      | 12V            |  |
| M                                                      | 24V            |  |
| P                                                      | 110V           |  |
| N                                                      | 48V            |  |
| U                                                      | 36V            |  |
| 6                                                      | 60V            |  |
| G                                                      | 125V           |  |
| The tension symbol is always printed on the nameplate. |                |  |

# TAB.3 SPOOL

| Two solenoids - Assembly C |         |       |                  |
|----------------------------|---------|-------|------------------|
| Type of spool              | MA OB M | Cover | Transit position |
| 01                         |         | +     | XIIII            |
| 02                         |         | ı     |                  |
| 03                         |         | +     |                  |
| 04*                        |         | -     |                  |


| One solenoid - Assembly E |          |       |                  |
|---------------------------|----------|-------|------------------|
| Type of spool             | a/A O    | Cover | Transit position |
| 01                        | a/XII    | +     | XIIII            |
| 02                        | a/XHV    | -     | XHH              |
| 03                        | a/ XII w | +     | EZZ              |
| 04*                       | a/ III w | -     |                  |
| 16                        |          | +     |                  |

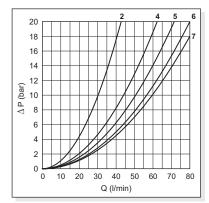
| One solenoid - Assembly F |         |       |                  |
|---------------------------|---------|-------|------------------|
| Type of spool             | W O B D | Cover | Transit position |
| 01                        | WHITE   | +     |                  |
| 02                        | W##     | -     |                  |
| 03                        | WHILE   | +     | Him              |
| 04*                       | WHIXT   | -     |                  |
| 16                        | WXIII.  | +     | X11X             |

(\*) spool with increased price

# LIMITS OF USE (MOUNTING C-E-F)

# AD.3.XG...




The tests have been carried out with solenoids at operating temperature with a voltage 10% less than rated voltage with a fluid temperature of 40°C. The fluid used was a mineral oil with a viscosity of 46 mm²/s at 40°C. The values in the diagram refers to tests carried out with the oil flow in two direction simultaneously (e.g., from P to A and in the same time B to T).

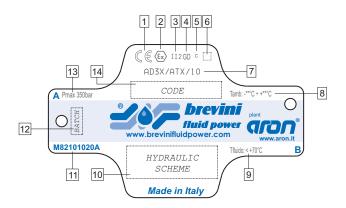
In cases where valves 4/2 e 4/3 were used with the flow in one direction only, the limits of use could have variations which may even be negative.

| Spool<br>type | Curve |
|---------------|-------|
| 01            | 1     |
| 02            | 1     |
| 03            | 3     |
| 04            | 2     |
| 16            | 6     |

## PRESSURE DROPS

# AD.3.XG...




The diagram at the side shows the pressure drop curves for spools during normal usage. The fluid used is a mineral oil with a viscosity of 46 mm²/s at 40°C; the tests have been carried out at a fluid temperature of 40°C. For higher flow rates than those in the diagram, the losses will be those expressed by the following formula:

$$\Delta p1 = \Delta p \ x \ (Q1/Q)^2$$

| Spool         | Connections       |     |                   |     |     |
|---------------|-------------------|-----|-------------------|-----|-----|
| Spool<br>type | $P \rightarrow A$ | Р→В | $A \rightarrow T$ | В→Т | P→T |
| 01            | 5                 | 5   | 5                 | 5   |     |
| 02            | 7                 | 7   | 7                 | 7   | 6   |
| 03            | 5                 | 5   | 6                 | 6   |     |
| 04            | 2                 | 2   | 2                 | 2   | 4   |
| 16            | 5                 | 5   | 4                 | 4   |     |
|               | Curve No.         |     |                   |     |     |

where Δp will be the value for the losses for a specific flow rate Q which can be obtained from the diagram, Δp1 will be the value of the losses for the flow rate Q1 that is used.

#### **IDENTIFICATION NAMEPLATE AND MARKING**

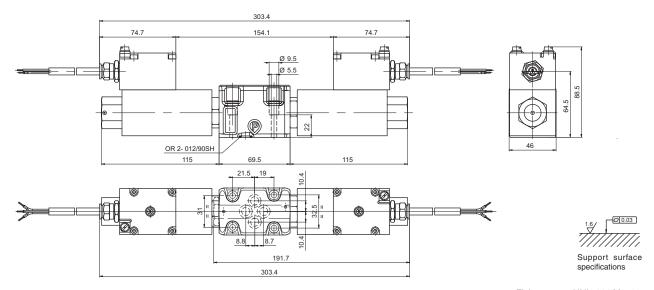


All the solenoid valves are supplied with identification nameplate and Declaration of conformity subject to Directive 94/9/EC.

The identification nameplate bears the main technical specifications related to the functional and constructional characteristics of the valve and must therefore be kept intact and visible.

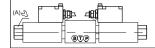
| 1 | C€              | Conformity to European Directive                                                                                    |
|---|-----------------|---------------------------------------------------------------------------------------------------------------------|
| 2 | €\$             | Conformity to<br>ATEX Directive 94/9/EC                                                                             |
| 3 | II 2            | Group II (surface places) Category 2 (high protection)                                                              |
| 4 | GD              | Explosive atmosphere:  GD: presence of gas, vapour or mist and combustible dust                                     |
| 5 | С               | Constructional safety                                                                                               |
| 6 | T*              | Temperature class:<br>T4 (T <sub>sur</sub> <135 °C) series AD3XG T4<br>T6 (T <sub>sur</sub> <85 °C) series AD3XG T6 |
| 7 | AD3X/<br>ATX/10 | Reference to Technical File registered c/o Notified Body                                                            |

| 8  | T amb               | Working ambient temperature: - 40°C ÷ + 80°C series AD3XG T4 - 40°C ÷ + 50°C series AD3XG T6 |
|----|---------------------|----------------------------------------------------------------------------------------------|
| 9  | T fluid             | Working fluid temperature: - 30°C ÷ + 70°C series AD3XG                                      |
| 10 | HYDRAULIC<br>SCHEME | Type of hydraulic control performed by the valve                                             |
| 11 | M82101020A          | Nameplate code                                                                               |
| 12 | ВАТСН               | Reference number of technical order (batch)                                                  |
| 13 | Pmax 350<br>bar     | Max.working pressure                                                                         |
| 14 | CODE                | Complete reference number of valve ordering code                                             |


#### **S**AFETY INSTRUCTIONS

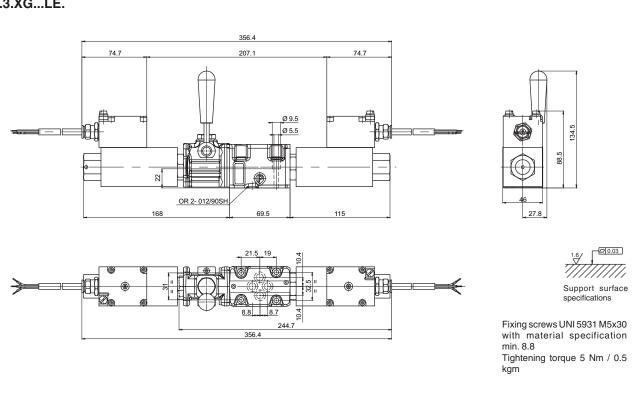
- Read the instruction handbook supplied with the valves carefully before installation. All maintenances must be carried out following the instructions given in the manual.
- The AD3XG series valves must be installed and serviced in compliance with plant engineering and maintenance regulations for workplaces classified against the risk of explosion due to the presence of gas and dust and gas (for example: CEI EN 60079-14, CEI EN 60079-17, CEI EN 61241-14, CEI EN 61241-17 or other national regulations/standards).
- The valves must be connected to earth using the special anti-loosening and anti-rotation connection element.
- For all safety aspects related to the use of the coils, consult the relative use and maintenance instructions. The electrical appliances/components must not be opened when live.
- The user must periodically inspect, based on the conditions of use and the substances used, the presence of scale, dirt, the state of wear and tear and correct efficiency of the valves.

Attention: all installation and maintenance jobs must be carried out by qualified personnel.


#### **O**VERALL DIMENSIONS

#### AD.3.XG...




Fixing screws UNI 5931 M5x30 with material specification min. 8.8

Tightening torque 5 Nm / 0.5 kgm



Should it be necessary to change the coils position, fasten ring nut  ${\sf A}$  as described in the solenoid valve assembly instructions.

#### AD.3.XG...LE.



# anon

| CETOP 5/NG10        |               |  |  |
|---------------------|---------------|--|--|
| STANDARD SPOOLS     | Ch. I PAGE 31 |  |  |
| AD.5.E              | Ch. I PAGE 32 |  |  |
| AD.5.EJ*            | Ch. I page 33 |  |  |
| AD.5.EQ5            | Ch. I page 33 |  |  |
| AD.5.O              | Ch. I page 34 |  |  |
| AD.5.D              | Ch. I page 34 |  |  |
| AD.5.L              | Ch. I page 35 |  |  |
| "A16" DC SOLENOIDS  | Ch. I page 36 |  |  |
| "K16" AC SOLENOIDS  | Ch. I page 36 |  |  |
| STANDARD CONNECTORS | Ch. I PAGE 20 |  |  |

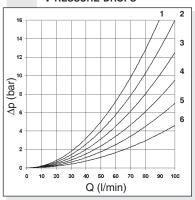
#### DIRECTIONAL CONTROL VALVES CETOP 5/NG10 # brevini

#### Introduction

The ARON directional control valves NG10 designed for subplate mounting with an interface in accordance with UNI ISO 4401 - 05 - 04 - 0 - 94 standard (ex CETOP R 35 H 4.2-4-05), and can be used in all fields on account of their excellent capacity and pressure specifications.

The use of solenoids with wet armatures means that the construction is extremely functional and safe completely dispensing with need for dynamic seals. The solenoid dust cover is screwed directly onto the valve casing whilst the coil is kept in position by a ring nut.

Great care has been taken in the design and the production of the ducts and the improvement of the spools has allowed relatively high flow rates to be accommodated with minimal pressure drops ( $\Delta p$ ). The operation of the directional valves can be electrical, pneumatic, oleodynamic, mechanical or lever operated .


The centring position is achieved by means of calibrated length springs which, once the action of impulse is over, return the spool to the centre or end travel position.

The solenoids constructed with protection class in accordance with DIN 40050 standards are available in either direct current (IP65) or alternating current (IP66) with different voltage and frequencies.

All types of electrical controls can be fitted, on request, with different types of manual emergency controls. The electrical supply takes place through connectors meeting DIN 43650 ISO 4400 standards; connectors are also available with built in rectifier or pilot lights.

The valves are designed for use with DIN 51524 standard hydraulic mineral oils and it is recommended that filters should be fitted to ensure a maximum contamination level of class 10 in accordance with NAS 1638,  $\beta_{\rm pg} \ge 75$ .

#### PRESSURE DROPS



The diagram at the side show the pressure drop curves for spools during normal usage. The fluid used is a mineral oil with a viscosity of 46 mm²/s at 40°C; the tests have been carried out at a fluid temperature of 40°C.

For higher flow rates than those in the diagram, the losses will be those expressed by the following formula:

$$\Delta p1 = \Delta p \times (Q1/Q)^2$$

where  $\Delta p$  will be the value for the losses for a specific flow rate Q which can be obtained from the diagram,  $\Delta p1$  will be the value of the losses for the flow rate Q1 that is used.

| Spool | Connections |                                 |        |        |     |
|-------|-------------|---------------------------------|--------|--------|-----|
| type  | P→A         | Р→В                             | A→T    | В→Т    | P→T |
| 01    | 2           | 2                               | 5      | 5      |     |
| 02    | 2 3         | 2<br>3<br>2<br>3<br>3<br>2<br>2 | 6      | 6      | 3   |
| 03    | 2           | 2                               | 6      | 6      |     |
| 04    | 3           | 3                               | 4      | 4      | 1   |
| 05    | 3           | 3                               | 5      | 5      |     |
| 06    | 2<br>2      | 2                               | 5      | 5      |     |
| 66    | 2           | 2                               | 5<br>5 | 5      |     |
| 07    |             | 1                               | 5      |        |     |
| 10    | 3           | 3                               | 5      | 5<br>5 |     |
| 11    | 4           |                                 |        | 5      |     |
|       | Curve No.   |                                 |        |        |     |

| Spool | Connections           |             |     |     |     |
|-------|-----------------------|-------------|-----|-----|-----|
| type  | P→A                   | Р→В         | A→T | В→Т | P→T |
| 22    |                       | 4           | 5   |     |     |
| 14    | 3                     | 3           | 6   | 6   | 2   |
| 15    | 3<br>2<br>2<br>3<br>3 | 2           | 4   | 5   |     |
| 16    | 2                     | 2<br>2<br>3 | 4   | 5   |     |
| 17    | 3                     | 3           |     |     |     |
| 19    | 3                     | 3           | 4   | 5   |     |
| 20    | 3<br>3                | 3           | 4   | 5   |     |
| 21    | 3                     | 3           |     |     |     |
| 28    | 3                     | 3           | 6   | 6   | 2   |
|       |                       |             |     |     |     |
|       | Curve No.             |             |     |     |     |

#### **O**RDERING CODE

AD 5

\*

Directional valve

CE

Type of operator (tab.1)

\*\*

\*

\* \* 2

onectional valve

CETOP 5/NG10

Spools (see tables on page I•31)

Mounting type (tab.2)

Voltage / Specification (tab.3)

Variants (tab.4)

Serial No.

#### TAB.1 - TYPE OF OPERATOR

- **E** Electrical
- D Direct mechanical
- O Oleo-pneumatic
  - Lever

#### Tab.3 - Voltage / Specification

| Operator | Voltage<br>Specs. | Description                                           | Note                                                    |
|----------|-------------------|-------------------------------------------------------|---------------------------------------------------------|
|          | Α                 | 24V/50Hz                                              |                                                         |
|          | В                 | 48V/50Hz*                                             |                                                         |
|          | J                 | 115V/50Hz - 120V/60Hz                                 | AC Voltage **                                           |
|          | Υ                 | 230V/50Hz - 240V/60Hz                                 | (Technical data see page                                |
|          | E                 | 240V/50Hz*                                            | I • 36)                                                 |
|          | F                 | 24V/60Hz*                                             |                                                         |
|          | K                 | Without AC coils                                      |                                                         |
|          | L                 | 12V                                                   |                                                         |
| E        | M                 | 24V                                                   |                                                         |
| _        | N                 | 48V*                                                  |                                                         |
|          | Р                 | 110V*                                                 |                                                         |
|          | z                 | 102V*<br>115Vac/50Hz<br>120Vac/60Hz<br>with rectifier | DC Voltage **<br>(Technical<br>data see page<br>I • 36) |
|          | x                 | 205V*<br>230Vac/50Hz<br>240Vac/60Hz<br>with rectifier |                                                         |
|          | W                 | Without DC coils                                      |                                                         |
| D        | Z                 | standard                                              | _                                                       |
| 0        | Z                 | standard                                              | _                                                       |
|          | Z                 | valve with lever                                      | _                                                       |
| L        | Х                 | valve without lever                                   | _                                                       |

- \* Special voltage
- \*\* Voltage codes are not stamped on the plate, their are readable on the coils.

### Tab.2 Mounting

| IVIOUNTING |                              |  |  |  |
|------------|------------------------------|--|--|--|
|            | Standard                     |  |  |  |
| С          | a A O B Wb                   |  |  |  |
| D          | a/ABW                        |  |  |  |
| E          | a/AOW                        |  |  |  |
| F          | W O B L                      |  |  |  |
| Spec       | IALS (WITH PRICE INCREASING) |  |  |  |
| G          | MAOTE                        |  |  |  |
| н          | a/OBW                        |  |  |  |
| I          | a/AO\b                       |  |  |  |
| L          | a/ 0 B b                     |  |  |  |
| М          | a/AB\b                       |  |  |  |

- Mounting type D is only for valves with detent
- In case of mounting D with detent a maximum supply time of 2 sec is needed (only for AC coils).
- The springs for the version with detent (mounting **D**) are different from those for standard versions.

#### Tab.4 - Variants

| Variant                                                                | CODE  | <b>*</b> | PAGE       |  |
|------------------------------------------------------------------------|-------|----------|------------|--|
| No variant (without connectors)                                        | S1(*) |          |            |  |
| Viton                                                                  | SV(*) |          |            |  |
| Emergency button                                                       | ES(*) |          | I•36       |  |
| Preset for microswitch - (E/F/G/H only) see below note ◊               | MS(*) | <b>*</b> | I•32- I•35 |  |
| Rotary emergency button                                                | P2(*) |          | I•36       |  |
| Marine version (AD.5.O)                                                | H1    | <b>*</b> |            |  |
| Preset for microswitch + Viton                                         | MV    | •        |            |  |
| Spool movement speed control (VDC only) with ø 0.5 mm diameter orifice | 5S(*) | •        | I•33       |  |
| Spool movement speed control (VDC only) with ø 0.6 mm diameter orifice | 6S(*) | <b>*</b> | I•33       |  |
| Spool movement speed control (VDC only) with ø 0.7 mm diameter orifice | 7S(*) | •        | I•33       |  |
| Spool movement speed control (VDC only) with ø 0.8 mm diameter orifice | 8S(*) | <b>*</b> | I•33       |  |
| External draining solenoid (electrically operated only)                | S5(*) | •        | I•33       |  |
| Microswitch+ Detent (for lever operation)                              | MD    | •        |            |  |
| Detent for lever control                                               | D1    | <b>*</b> |            |  |
|                                                                        |       | •        |            |  |

- ◊ = Maximum counter-pressure on T port: 4 bar Microswitch type AM1107 code V79000001 can be ordered separately.
- ♦ = Variant codes stamped on the plate
- (\*) Coils with Hirschmann connection supplied without connectors. The connectors can be ordered separately, ch. I page 20.

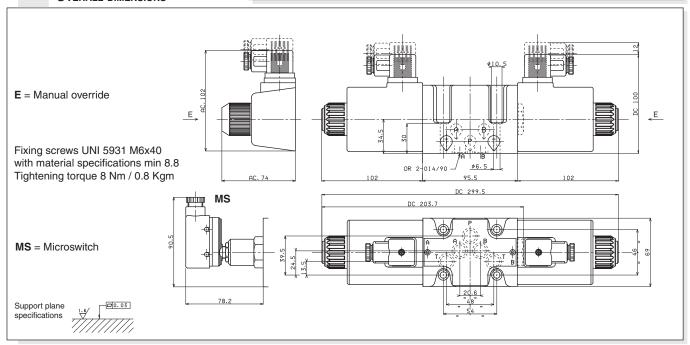
| Two solenoids, spring centred "C" mounting |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                          |  |  |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------|--|--|
| Spool<br>type                              | MA OB W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Covering | Transient position                       |  |  |
| 01                                         | a/XIIII Vb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +        | XXIIII                                   |  |  |
| 02                                         | a/XIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -        | XHHHIII                                  |  |  |
| 03                                         | MATTER STATE OF THE STATE OF TH | +        |                                          |  |  |
| 04*                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        |                                          |  |  |
| 05                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +        | XZELIO                                   |  |  |
| 66                                         | a/XIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +        | XI.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |  |  |
| 06                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +        |                                          |  |  |
| 07*                                        | a/XIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +        |                                          |  |  |
| 08*                                        | a IIII b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +        |                                          |  |  |
| 10*                                        | ay I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +        |                                          |  |  |
| 22*                                        | a/XIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +        |                                          |  |  |
| 11*                                        | a/TITIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +        | 873310                                   |  |  |
| 12*                                        | a/IIII b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +        |                                          |  |  |
| 13*                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +        |                                          |  |  |
| 14*                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        | DEFFX                                    |  |  |
| 28*                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        | MHHHM                                    |  |  |

| ONE SOLENOID, SIDE A "E" MOUNTING |            |          |                    |  |  |  |
|-----------------------------------|------------|----------|--------------------|--|--|--|
| Spool<br>type                     | a/A O      | Covering | Transient position |  |  |  |
| 01                                |            | +        |                    |  |  |  |
| 02                                | a/ X   W   | -        |                    |  |  |  |
| 03                                |            | +        |                    |  |  |  |
| 04*                               |            | -        |                    |  |  |  |
| 05                                | a/ T       | +        | XXE                |  |  |  |
| 66                                | a/ XI      | +        |                    |  |  |  |
| 06                                |            | +        |                    |  |  |  |
| 08*                               |            | +        |                    |  |  |  |
| 10*                               |            | +        | EXX                |  |  |  |
| 12*                               | a//ii      | +        |                    |  |  |  |
| 15                                | a/ X W     | -        | XHD                |  |  |  |
| 16                                | a/ X   W   | +        | X1.1               |  |  |  |
| 17                                | a/ / I I W | +        | Mr.illi            |  |  |  |
| 14*                               | a/ III     | -        |                    |  |  |  |
| 28*                               |            | -        |                    |  |  |  |

#### STANDARD SPOOLS

- (\*) Spool with price increasing
- $\bullet$  With spools 15 / 16 / 17 only the mounting E / F are possible
- $\bullet$  19 / 20 / 21 spool not planned for AD.5.E...J\*
- For lever operated the spools used are different. Available spools for this kind of valve see AD5L..

| 0             | ONE SOLENOID, SIDE B "F" MOUNTING      |          |                    |  |  |  |  |
|---------------|----------------------------------------|----------|--------------------|--|--|--|--|
| Spool<br>type | W O B b                                | Covering | Transient position |  |  |  |  |
| 01            | WHITE                                  | +        |                    |  |  |  |  |
| 02            | W                                      | -        |                    |  |  |  |  |
| 03            | W####                                  | +        |                    |  |  |  |  |
| 04*           | WIII D                                 | -        |                    |  |  |  |  |
| 05            | w#III-                                 | +        | ELI                |  |  |  |  |
| 66            | W                                      | +        | 1111               |  |  |  |  |
| 06            | WHILE                                  | +        | SHI                |  |  |  |  |
| 08*           | W####                                  | +        |                    |  |  |  |  |
| 10*           | W####                                  | +        |                    |  |  |  |  |
| 22*           | WHILE                                  | +        | HIE                |  |  |  |  |
| 12*           | WHILE                                  | +        |                    |  |  |  |  |
| 13*           |                                        | +        |                    |  |  |  |  |
| 07*           | WHILE                                  | +        |                    |  |  |  |  |
| 15            | ~XIII-6                                | -        | XHII               |  |  |  |  |
| 16            | <b>***</b>                             | +        | X1.1               |  |  |  |  |
| 17            | ~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | +        |                    |  |  |  |  |
| 14*           | whx.                                   | -        | EXX                |  |  |  |  |
| 28*           | wttXr=                                 | -        |                    |  |  |  |  |


| Two solenoids "D" mounting |         |          |                    |  |  |  |
|----------------------------|---------|----------|--------------------|--|--|--|
| Spool<br>type              | a/ABWb  | Covering | Transient position |  |  |  |
| 19*                        | a/ Wb   | -        |                    |  |  |  |
| 20*                        | a/ Wb   | +        | 7.7.7              |  |  |  |
| 21*                        | a//ii/b | +        |                    |  |  |  |



A max. counter-pressure of 4 bar at T is permitted for the variant with a microswitch (MS).

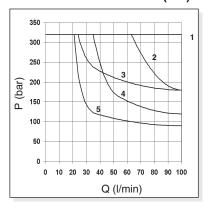
| Max. pressure ports P/A/B                   | 350 bar                              |
|---------------------------------------------|--------------------------------------|
| Max. pressure port T (DC coil) see note (*) | 250 bar                              |
| Max. pressure port T (AC coil)              | 160 bar                              |
| Max. flow                                   | 100 l/min                            |
| Max. excitation frequency                   | 3 Hz                                 |
| Duty cycle                                  | 100% ED                              |
| Fluid viscosity                             | 10 ÷ 500 mm <sup>2</sup> /s          |
| Fluid temperature                           | -25°C ÷ 75°C                         |
| Ambient temperature                         | -25°C ÷ 60°C                         |
| Max. contamination level                    | class 10 in accordance with NAS      |
|                                             | 1638 with filter ß <sub>25</sub> ≥75 |
| Weight (with one DC solenoid)               | 4 Kg                                 |
| Weight (with two DC solenoids)              | 5,1 Kg                               |
| Weight (with one AC solenoid)               | 3,5 Kg                               |
| Weight (with two AC solenoids)              | 4,3 Kg                               |

#### OVERALL DIMENSIONS

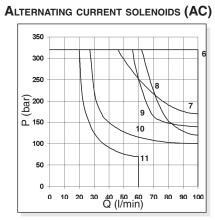


(\*) Pressure dynamic allowed for 2 millions of cycles.

#### LIMITS OF USE (MOUNTING C-E-F)S


The tests have been carried out with solenoids at operating temperature and a voltage 10% less than rated voltage with a fluid temperature of 40°C. The fluid used was a mineral oil with a viscosity of 46 mm²/s at 40°C.

The values in the diagram refer to tests carried out with the oil flow in two directions simultaneously T = 2 bar (e.g. from P to A and the same time B to P).


In the cases where valves 4/2 and 4/3 were used with the flow in one direction only, the limits of use could have variations which may even be negative. Rest time: the values are indicative and depend on the following parameters: hydraulic circuit, fluid used and variations in hydraulic scales (pressure P, flow Q, temperature T).

Direct current : Energizing  $60 \div 95$  ms. Alternating current: Energizing  $12 \div 30$  ms. De-energizing  $25 \div 70$  ms. De-energizing  $10 \div 55$  ms.

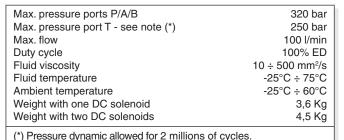
#### DIRECT CURRENT SOLENOIDS (DC)

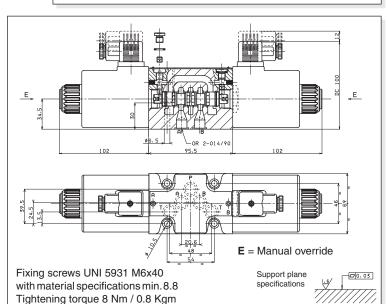


| Spool   | Sole   | noids |  |
|---------|--------|-------|--|
| type    | DC     | AC    |  |
| 01      | 1      | 8     |  |
| 02      | 1      | 6     |  |
| 03      | 2      | 7     |  |
| 04      | 4      | 10    |  |
| 05      | 1      | 6     |  |
| 06 - 66 | 3      | 9     |  |
| 14-28   | 5      | 11    |  |
| 15      | 3      | 10    |  |
| 16      | 1      | 6     |  |
|         | Curves |       |  |



#### Valves type AD5.E... with spool movement speed control.


These ON-OFF type valves are used when a lower spool movement speed than usual for conventional solenoid valves is required to prevent impacts which could adversely affect the smooth running of the system. The system consists of reducing the transfer section for the fluid from one solenoid to the other by means of calibrated orifice.


- This version can only be used with a direct current (DC) and also involves a reduction in the limits of use so that we suggest to always test the valve in your application.
- To order AD.5.J\* version valves, specify the orifices code.
- The operation is linked to a minimum counter-pressure on the T line (1 bar min.)
- The switching time referred to the spool travel detected by a LVDT transducer can vary for the NG10 valve a minimum of 200 to a maximum of 400 ms depending on 5 fundamental variables:
- 1) Diameter of the calibrated orifice (see table)
- 2) Hydraulic power for clearance referring to flow and pressure values through the valve
- 3) Spool type
- 4) Oil viscosity and temperature
- 5) Counter-pressure at T line
- Possible mounting: C / E / F / G / H
- 19 / 20 / 21 spools not planned for AD.5.E...J\*

| CALIBRATED        |             |                    |  |
|-------------------|-------------|--------------------|--|
| ORIFICE AVAILABLE |             |                    |  |
| ø (mm)            | M6x6        | Code               |  |
| 0.5               | M89.10.0031 | <b>5S</b> (J5+S1)* |  |
| 0.6               | M89.10.0026 | <b>6S</b> (J6+S1)* |  |
| 0.7               | M89.10.0032 | <b>7S</b> (J7+S1)* |  |
| 0.8               | M89.10.0033 | <b>8S</b> (J8+S1)* |  |

<sup>\*</sup> Old code

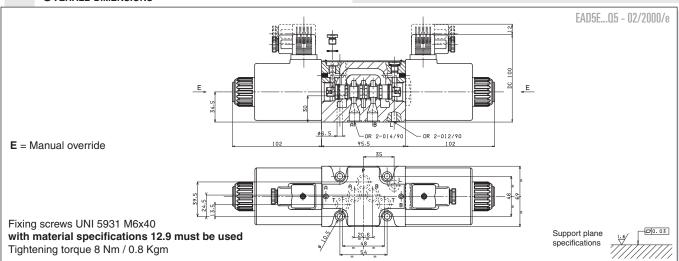
EAD5E...J\$ - 00/2000/e





#### AD.5.E...Q5 VALVES WITH EXTERNAL DRAINING SOLENOID - VARIANT Q5

#### খদ brevini


#### Valves type AD5.E...Q5 with external draining solenoid.

This involves valves with solenoid drainage chambers separated by line T in the CETOP 5 interface distinguished by the letter L. This solution makes it possible to operate with a maximum counterpressure at T up to 320 bar using only 12.9 material fixing screws to ensure the maximum safety of the solenoid valve fixing and use of an additional drain. This version can be used for direct current (DC) and alternating current (AC), but involves a reduction in the limits of usage depending on the pressure at T.

- Mounting possible: C / D / E / F / G / H / I / L / M
- For subplate see BSH.5.31..

#### OVERALL DIMENSIONS

Max. pressure ports P/A/B/T 320 bar 250 bar Max. pressure port L (DC coils) see note (\*) Max. pressure port L (AC coils) 160 bar Max. flow 100 l/min Max. excitation frequency 2 Hz Duty cycle 100% ED Fluid viscosity  $10 \div 500 \text{ mm}^2/\text{s}$ Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C Weight with one DC solenoid 3,6 Kg Weight with two DC solenoids 4,5 Kg Weight with one AC solenoid 3,5 Kg Weight with two AC solenoids 4,3 Kg (\*) Pressure dynamic allowed for 2 millions of cycles.





**OVERALL DIMENSIONS** 

Max. pressure ports P/A/B Max. pressure port T Max. flow Min. operating pressure Max. operating pressure Fluid viscosity Fluid temperature Ambient temperature

-25°C ÷ 75°C -25°C ÷ 60°C Max. contamination level class 10 in according with NAS 1638 with filter ß<sub>25</sub>≥75 Weight (single pilot) Weight (twin pilot)

• Possible mounting: Hydraulic control: C/D/E/F/G/H/ I/L/M Pneumatic control: I/L/M

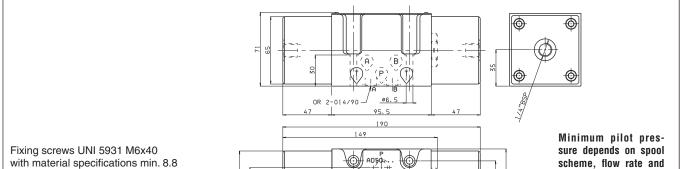
320 bar

160 bar

100 l/min

200 bar

4,1 Kg


5,4 Kg

10 ÷ 500 mm<sup>2</sup>/s

4 + [0.027 x (pt\*)] bar - see note

• Ordering code see page I•30

(pt\*) = Pressure at port T



with material specifications min. 8.8 Tightening torque 8 Nm / 0.8 Kgm

Support plane



pressure. To allow the spool to return to nautral position, the pilot pressure

must be below 2 bar.

EAD50 - 02/2000/e

#### AD.5.D... DIRECT MECHANICALLY OPERATED TYPE VALVES CETOP 5/NG10



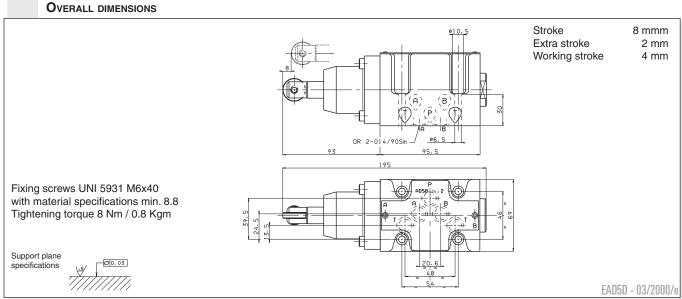


Max. pressure ports P/A/B Max. pressure port T Max. flow Operating force - see note (\*) Fluid viscosity

Fluid temperature Ambient temperature Max. contamination level

Weight

320 bar 20 bar 100 l/min 8 Kg - see note (\*\*) 10 ÷ 500 mm<sup>2</sup>/s -25°C ÷ 75°C -25°C ÷ 60°C class 10 in accordance with NAS 1638 with filter B<sub>25</sub>≥75


3,8 Kg

E/F/G/H • Ordering code see page I•30 • Notes:

• Possible mounting:

(\*) In the absence of counter-pressure at port T

(\*\*)10 Kg with a pressure of 20 bar at T





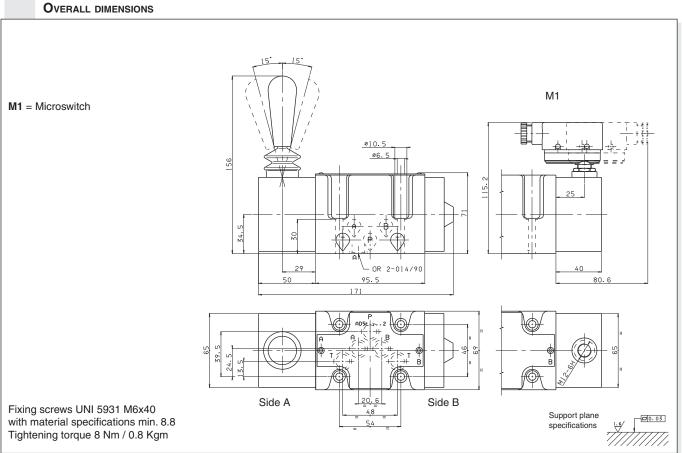
|                 | AD.5.L        |
|-----------------|---------------|
| ORDERING CODE   | Ch. I PAGE 30 |
| STANDARD SPOOLS | Ch. I PAGE 31 |

#### AD.5.L... LEVER OPERATED TYPE VALVES CETOP 5/NG10

খ্যদ brevini

| Max. pressure ports P/A/B | 320 bar                                  |
|---------------------------|------------------------------------------|
| Max. pressure port T      | 160 bar                                  |
| Max. flow                 | 100 l/min                                |
| Lever angle               | 2 x 15°                                  |
| Fluid viscosity           | 10 ÷ 500 mm <sup>2</sup> /s              |
| Fluid temperature         | -25°C ÷ 75°C                             |
| Ambient temperature       | -25°C ÷ 60°C                             |
| Max. contamination level  | class 10 in accordance with              |
|                           | NAS 1638 with filter B <sub>25</sub> ≥75 |
| Weight                    | 4,7 Kg                                   |
| Weight with M1 variant    | 5,35 Kg                                  |
|                           |                                          |

- Completely different spools are used for these (lever operated) valves than for all other types of operation (e.g. electrical, mechani-
- Available spools: 01 / 02 / 03 / 04 / 05 / 06 / 66 / 07 / 22 / 13 / 15 / 16 / 17 (for hydraulic symbols see page 1•30)


cal, pneumatic operation, ....)

• Microswitch type AM1107 code V79000001 can be ordered separately.

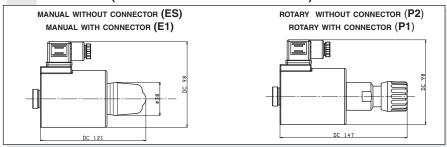
• Possible mounting: C/E/F

(with mounting "F" and spools "15-16-17" the lever is on side "B")

- There is no D type mounting
- The variant D1 specifies the detent (mechanical connection) for lever operation
- The springs for the version with detent (variant D1) are different from those for standard versions.






#### "A16" DC COILS FOR CETOP 5

| Type of protection (in relation to the connector used) | IP 65        |
|--------------------------------------------------------|--------------|
| Number of cycles                                       | 18.000/h     |
| Supply tolerance                                       | ±10%         |
| Ambient temperature                                    | -30°C ÷ 60°C |
| Duty cycle                                             | 100% ED      |
| Insulation class wire                                  | Н            |
| Weight                                                 | 0,9 Kg       |
|                                                        |              |

| VOLTAGE                 | MAX WINDING TEMPERATURE    | RATED POWER | RESISTANCE AT 20°C |
|-------------------------|----------------------------|-------------|--------------------|
| (V)                     | (Ambient temperature 25°C) | (W)         | (Онм) ±7%          |
| 12V                     | 106°C                      | 45          | 3.2                |
| 24V                     | 113°C                      | 45          | 12.4               |
| 48V*                    | -                          | 45          | -                  |
| 102V <sup>(*)(**)</sup> | -                          | 45          | -                  |
| 110V <sup>(*)(**)</sup> | 118°C                      | 45          | 268                |
| 205V <sup>(*)(**)</sup> | -                          | 45          | -                  |

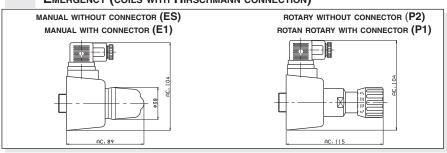
\*\* The european low voltage directive is applied to electronical equipments used at a nominal voltages between 50 and 1000 VAC or 75 and 1500 VDC. In conformity with the low directive each part of the manifold or the subplate on which the valve is mounted should be connected to a protective earth with a resistence less than 0.1 ohms.

#### EMERGENCY (COILS WITH HIRSCHMANN CONNECTION)





#### "K16" AC SOLENOIDS FOR CETOP 5


#### এদ brevini

Type of protection (in relation to the connector used) IP 66 Number of cycles 18.000/h Supply tolerance +10% / -10% -54°C ÷ 60°C Ambient temperature Duty cycle 100% ED Max. pressure static 210 bar Insulation class wire Н Weight 0,8 Kg

| Max. WINDING TEMPERATURE  | RATED                                                                   | IN RUSH CURRENT                                                                                                                                                                                       | RESISTANCE AT 20°C                                                                                                                                                                                                                                                         |
|---------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Ambient temperature25°C) | POWER(VA)                                                               | (VA)                                                                                                                                                                                                  | (Онм) ±10%                                                                                                                                                                                                                                                                 |
| 134°C                     | 124                                                                     | 454                                                                                                                                                                                                   | 0.56                                                                                                                                                                                                                                                                       |
| 115°C                     | 103.5                                                                   | 440                                                                                                                                                                                                   | 0.55                                                                                                                                                                                                                                                                       |
| 134°C                     | 113                                                                     | 453                                                                                                                                                                                                   | 2.10                                                                                                                                                                                                                                                                       |
| 121°C - 138°C             | -                                                                       | -                                                                                                                                                                                                     | 10.8                                                                                                                                                                                                                                                                       |
| 121°C - 138°C             | -                                                                       | -                                                                                                                                                                                                     | 43.0                                                                                                                                                                                                                                                                       |
| 134°C                     | 120                                                                     | 456                                                                                                                                                                                                   | 47.39                                                                                                                                                                                                                                                                      |
|                           | (AMBIENT TEMPERATURE25°C) 134°C 115°C 134°C 121°C - 138°C 121°C - 138°C | (AMBIENT TEMPERATURE25°C)         POWER(VA)           134°C         124           115°C         103.5           134°C         113           121°C - 138°C         -           121°C - 138°C         - | (AMBIENT TEMPERATURE25°C)         POWER(VA)         (VA)           134°C         124         454           115°C         103.5         440           134°C         113         453           121°C - 138°C         -         -           121°C - 138°C         -         - |

\*\* The european low voltage directive is applied to electronical equipments used at a nominal voltages between 50 and 1000 VAC or 75 and 1500 VDC. In conformity with the low directive each part of the manifold or the subplate on which the valve is mounted should be connected to a protective earth with a resistence less than 0.1 ohms.

#### **EMERGENCY (COILS WITH HIRSCHMANN CONNECTION)**





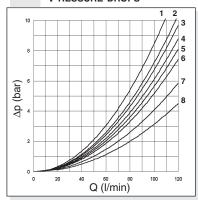
| ADP.5.E             | •             |
|---------------------|---------------|
| "D19" DC SOLENOIDS  | Ch. I page 39 |
| STANDARD CONNECTORS | Ch. I PAGE 20 |

# ADP. 5.E... DIRECTIONAL CONTROL CETOP 5/NG10 HIGH PERFORMANCES SOLENOID OPERATED VALVES ## brevini

The ARON NG10 directional control valves are designed for subplate mounting with an interface in accordance with UNI ISO 4401 - 05 - 04 - 0 - 94 standard (ex CETOP R 35 H 4.2-4-05). The use of solenoids with wet armatures allows an extremely safe construction completely dispensing with the need for dynamic seal. The solenoid tube is screwed directly onto the valve casing whilst the coil is kept in position by a ring nut. Great care has been taken over the design and production of the ducts and the improvement of the spools allows relatively high flow rates to be accommodated for its size with minimal pressure drops ( $\Delta p$ ). The operation of the directional valve is electrical. The centring is achieved by means of calibrated length springs which, once the impulse is over, immediately reposition the spool in the neutral position. The solenoids, constructed with a protection class of IP66 in accordance with BS 5490 standards, are available in direct current form and different voltage. The electrical controls are equipped with an emergency manual control inserted in the tube.

The ADP.5.E.. valve has certain design features which allow it to "manage" a hydraulic power equal to Q = 120l/min with a P = 320 bar, maintaining a considerable safety margin. These features can be summarized as follows:

- Solenoid D19 with an optimum ratio between the power absorbed (42W) and the magnetic force
- Diameter of the spool 18 mm, with carefully designed geometry improved to compensate for the flow forces
- Compact graphite cast iron valve casing with high mechanical resistance
- Different springs, improved according to the features of the spool


The electrical supply connectors meet DIN 43650 ISO 4400 standards; connectors are also available with built in rectifiers or pilot lights.

The recommended fluids are hydraulic mineral based oils in accordance with DIN 51524 and it is recommended that filters should be fitted to ensure a maximum contamination level of class 10 in accordance with NAS 1638,  $B_{pq} \ge 75$ .

For other fluids please contact our Technical DPT.

. The solenoids are in DC voltage only

#### PRESSURE DROPS



The diagram at the side shows the pressure drop curves for spools during normal usage. The fluid used is a mineral oil with a viscosity of 46 mm²/s at 40°C; the tests have been carried out at a fluid temperature of 40°C. For higher flow rates than those in the diagram, the losses will be those expressed by the following formula:

$$\Delta p1 = \Delta p \times (Q1/Q)^2$$

where  $\Delta p$  will be the value for the losses for a specific flow rate Q which can be obtained from the diagram,  $\Delta p1$  will be the value of the losses for the flow rate Q1 that is used.

| Spool | Connections |     |                  |                   |     |
|-------|-------------|-----|------------------|-------------------|-----|
| type  | P→A         | P→B | $A{ ightarrow}T$ | $B{ ightarrow} T$ | P→T |
| 01    | 4           | 4   | 7                | 7                 |     |
| 02    | 6           | 6   | 8                | 8                 | 7   |
| 03    | 3           | 3   | 8                | 8                 |     |
| 04    | 4           | 4   | 2                | 2                 | 3   |
| 05    | 6           | 6   | 6                | 6                 |     |
| 66    | 4           | 4   | 8                | 7                 |     |
| 06    | 4           | 4   | 7                | 8                 |     |
| 14    | 6           | 4   | 8                | 6                 | 2   |
| 15-19 | 2           | 2   | 5                | 5                 |     |
| 16-20 | 1           | 1   | 2                | 2                 |     |
| 28    | 4           | 6   | 6                | 8                 | 2   |
|       | Curve No.   |     |                  |                   |     |

#### ORDERING CODE

| ( | ADP |  |
|---|-----|--|
|   |     |  |

High performances directional control valve

5

CETOP 5/NG10



Electrical operator



Spools (Table next page)



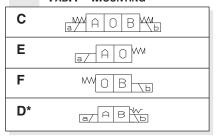
Mounting (table 1)



Voltage (table 2)

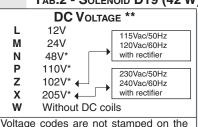


Variants (table 3)


1 Serial No.

#### TAB.3 - VARIANTS

| VARIANT                             | CODE  |
|-------------------------------------|-------|
| No variant (without connectors)     | S1(*) |
| Viton                               | SV(*) |
| Rotary emergency button             | P2(*) |
| Adjustable spool movement           |       |
| speed control                       | 4S(*) |
| With solenoid chamber external      |       |
| drainage (Y)                        | S5(*) |
| Spool movement speed control        |       |
| (VDC only) with ø 0.5 mm diameter   |       |
| orifice                             | 5S(*) |
| Spool movement speed control        |       |
| VDC only) with ø 0.8 mm diameter    |       |
| orifice                             | 8S(*) |
| Other variants available on request |       |


(\*) Coils with Hirschmann connection supplied without connectors. The connectors can be ordered separately, ch. I page 20.

#### TAB.1 - MOUNTING



(\*) Valve with detent

#### Tab.2 - Solenoid D19 (42 W)



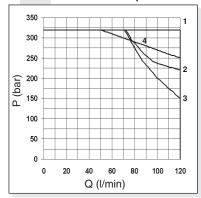
voltage codes are not stamped on the plate, their are readable on the coils.

<sup>\*</sup> Special voltage

<sup>\*\*</sup> Technical data see page I • 39

#### STANDARD SPOOLS

| Two solenoids, spring centred "C mounting" |          |          |                    |  |  |
|--------------------------------------------|----------|----------|--------------------|--|--|
| Spool<br>type                              | MA OB TO | Covering | Transient position |  |  |
| 01                                         |          | +        |                    |  |  |
| 02                                         |          | -        |                    |  |  |
| 03                                         |          | -        |                    |  |  |
| 04*                                        |          | -        |                    |  |  |
| 05                                         |          | -        |                    |  |  |
| 66                                         |          | -        |                    |  |  |
| 06                                         |          | -        |                    |  |  |
| 14*                                        |          | -        |                    |  |  |
| 28*                                        |          | -        |                    |  |  |


| ONE SOLENOID, SIDE A "E MOUNTING" |                                          |          |                    |  |  |  |
|-----------------------------------|------------------------------------------|----------|--------------------|--|--|--|
| Spool<br>type                     | a/AO                                     | Covering | Transient position |  |  |  |
| 01                                |                                          | +        |                    |  |  |  |
| 02                                | a/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | -        |                    |  |  |  |
| 03                                | a/\\\                                    | -        | CHIX               |  |  |  |
| 04*                               |                                          | -        |                    |  |  |  |
| 05                                |                                          | -        |                    |  |  |  |
| 66                                | a/ XII w                                 | -        | MHH.               |  |  |  |
| 06                                |                                          | -        | MHH                |  |  |  |
| 14*                               |                                          | -        |                    |  |  |  |
| 15                                |                                          | -        |                    |  |  |  |
| 16                                |                                          | +        |                    |  |  |  |
| 28*                               |                                          | -        |                    |  |  |  |

\* Spools with price increasing

| Two solenoids "D mounting" |           |   |       |  |  |  |
|----------------------------|-----------|---|-------|--|--|--|
| Spool<br>type              |           |   |       |  |  |  |
| 19*                        | a/ XII Vb | - | XHII  |  |  |  |
| 20*                        | a/ N W b  | + | XI.IX |  |  |  |

| ONE SOLENOID, SIDE B "F MOUNTING" |                                         |          |                    |  |  |
|-----------------------------------|-----------------------------------------|----------|--------------------|--|--|
| Spool<br>type                     | W O B TE                                | Covering | Transient position |  |  |
| 01                                | WHITE I                                 | +        |                    |  |  |
| 02                                | WHILE                                   | -        |                    |  |  |
| 03                                | WHILE                                   | -        |                    |  |  |
| 04*                               | WHITE                                   | -        | GRX                |  |  |
| 05                                | WHILE                                   | -        | HHM                |  |  |
| 66                                | W 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | -        |                    |  |  |
| 06                                | WHITE                                   | -        | FIHM               |  |  |
| 14*                               | w <u></u>                               | -        |                    |  |  |
| 15                                | WXIII-                                  | -        | MIHIN.             |  |  |
| 16                                | wXIII-                                  | +        |                    |  |  |
| 28*                               | WHITE                                   | -        |                    |  |  |

#### LIMITS OF USE (MOUNTING C-E-F)



| Spool | n°     |
|-------|--------|
| type  | curves |
| 01    | 1      |
| 02    | 1      |
| 03    | 2      |
| 04    | 1      |
| 05    | 1      |
| 66    | 1      |
| 06    | 1      |
| 14    | 3      |
| 15    | 1      |
| 16    | 1      |
| 28    | 3      |
| 19    | 4      |
| 20    | 4      |
|       |        |

The tests have been carried out with solenoids at operating temperature and a voltage 10% less than rated voltage with a fluid temperature of 50°C.

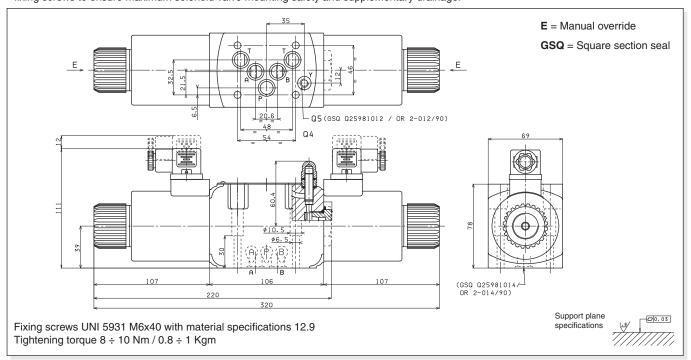
The fluid used was a mineral oil with a viscosity of 46 mm²/s at 40  $^{\circ}\text{C}.$ 

The values in the diagram refer to tests carried out with the oil flow in two directions simultaneously (e.g. from P to A and at the same time B to T).

In the cases where valves 4/2 and 4/3 were used with the flow in one direction only, the limits of use could have variations which may even be negative.

The tests were carried out with a counter-pressure of 2 bar at T.

ADP.5.E... 4S variant - These ON-OFF type valves are used when a lower spool movement speed is required than it is generally available with a conventional solenoid valve in order to avoid those shocks which might otherwise compromise proper system operation. This is obtained by forcing the fluid to pass through the gap which exists between the screw thread and the M8x1 tapped thread, restricting in this way the transfer cross section between the 2 solenoid chambers. Using this variant may entail a reduction in the operational limits according to the spool used, up to the complete blocking of the change over itself. The valve operation depends on the presence of a minimum back pressure on the T line (min. 1 bar). The change over time referred to the spool stroke depends on 4 main variables:


- Applicable hydraulic power, related to the flow rate and pressure drop across the valve;
- Spool type (system configuration);
- Oil viscosity and temperature;
- Back pressure on T.

| ı | Max. operating pressure: ports P/A  | √B 350 bar                                    |
|---|-------------------------------------|-----------------------------------------------|
| ı | Max. operating pressure: port T (*) | ) 250 bar                                     |
| ı | Max. flow                           | 120 l/min                                     |
| ı | Max. excitation frequency           | 3 Hz                                          |
| ı | Duty cycle                          | 100% ED                                       |
| ı | Fluid viscosity                     | 10 ÷ 500 mm²/s                                |
| ı | Fluid temperature                   | -25°C ÷ 75°C                                  |
| ı | Ambient temperature                 | -25°C ÷ 60°C                                  |
| ı | Max. contamination level            | class 10 in accordance                        |
| ı |                                     | with NAS 1638 with filter B <sub>25</sub> ≥75 |
| ı | Weight with one DC solenoid         | 5 Kg                                          |
| ı | Weight with two DC solenoids        | 6,5 Kg                                        |

(\*) Pressure dynamic allowed for 2 millions of cycles

Pressure on port T valid in case Y is blocked (no external drainage). Normally the external drainaged is blocked with a plug S.T.E.I M6x6 UNI 5923

**ADP.5.E... S5 variant** - These are valves with solenoid chambers drainage separated from the T line, obtained on CETOP RO5 interface and characterized by the letter Y. This solution allows operation with up to 320 bar max. back pressure on the T line while using only 12.9 material fixing screws to ensure maximum solenoid valve mounting safety and supplementary drainage.





#### "D19" DC SOLENOIDS

#### এদ brevini

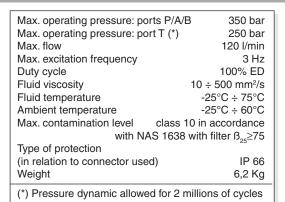
Type of protection (in relation to the connector used) IP 66 Number of cycle 18.000/h Supply tolerance ±10% Ambient temperature -54°C ÷ 60°C 100% ED Duty cycle Max static pressure 210 bar Insulation class wire Н Weight 1,63 Kg

| MOTARY EMERGENCY                           | HOTARY EMERGENCY |  |  |
|--------------------------------------------|------------------|--|--|
| WITHOUT CONNECTOR (P2) WITH CONNECTOR (P1) |                  |  |  |
| max.88.5                                   |                  |  |  |

POTABY EMERCENCY

| VOLTAGE<br>(V) | Max winding temperature (Ambient temperature25°C) | RATED<br>POWER<br>(W) | RESISTANCE AT 20°C (OHM) ±10% |
|----------------|---------------------------------------------------|-----------------------|-------------------------------|
| 12V            | 105°C                                             | 42                    | 3.43                          |
| 24V            | 105°C                                             | 42                    | 13.71                         |
| 48V*           | 105°C                                             | 42                    | 55                            |
| 102V(*)(**)    | 105°C                                             | 42                    | 248                           |
| 110V(*)(**)    | 105°C                                             | 42                    | 288                           |
| 205V(*)(**)    | 105°C                                             | 42                    | 1000                          |
| * Special      | voltage                                           |                       |                               |

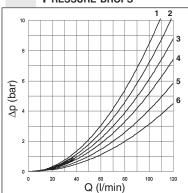
The european low voltage directive is applied to electronical equipments used at a nominal voltages between 50 and 1000 VAC or 75 and 1500 VDC. In conformity with the low directive each part of the manifold or the subplate on which the valve is mounted should be connected to a protective earth with a resistence less than 0.1 ohms.




| ADP.5.V             |               |
|---------------------|---------------|
| "D19" DC SOLENOIDS  | Ch. I PAGE 41 |
| STANDARD CONNECTORS | Ch. I PAGE 20 |
| L.V.D.T.            | Ch. I PAGE 22 |

# ADP.5.V... WITH PROXIMITY SENSOR L.V.D.T. CETOP 5/NG10

The ARON NG10 directional control valves are designed for subplate mounting with an interface in accordance with UNI ISO 4401 - 05-04-0-94 standard (ex CETOP R 35 H 4.2-4-05).


The single solenoid directional valves type ADP5V are used in applications where the monitoring of the position of the spool inside the valve is requested to manage the machine safety cycles in according with the accident prevention legislation. These directional valves are equipped with an horizontal positioned inductive



sensor on the opposite side of the solenoid, which is capable of providing the first movement of the valve when the passage of a minimum flow is allowed. Integrated in safety systems, these valves intercept actuator movements that could be dangerous for the operators and for the machine.

- Possible mountings: E / F
- The solenoid is in DC voltage only

#### PRESSURE DROPS



The diagram at the side shows the pressure drop curves for spools during normal usage. The fluid used is a mineral oil with a viscosity of 46 mm²/s at 40°C; the tests have been carried out at a fluid temperature of 40°C. For higher flow rates than those in the diagram, the losses will be those expressed by the following formula:

$$\Delta p1 = \Delta p \times (Q1/Q)^2$$

where  $\Delta p$  will be the value for the losses for a specific flow rate Q which can be obtained from the diagram,  $\Delta p1$  will be the value of the losses for the flow rate Q1 that is used.

| Spool Connect |           |     | nnectio | ns  |     |
|---------------|-----------|-----|---------|-----|-----|
| type          | P→A       | Р→В | A→T     | В→Т | P→T |
| 01            | 3         | 3   | 5       | 5   |     |
| 02            | 4         | 4   | 6       | 6   | 5   |
| 66            | 3         | 3   | 6       | 5   |     |
| 06            | 3         | 3   | 5       | 6   |     |
| 16            | 1         | 1   | 2       | 2   |     |
|               | Curve No. |     |         |     |     |

#### **ORDERING CODE**

ADP

High performances directional control valve

5

CETOP 5/NG10

V

Directional valve with single solenoid and L.V.D.T. proximity sensor

\*\*\*

Spool and mounting (table 1)

\*

Voltage (table 2)
Variants (table 3)

\*\*

Serial No.

# registered mark for industrial environment with reference to the electromagnetic compatibility.

European norms:

- EN50082-2 general safety norm industrial environment
  - EN 50081-1 emission general norm
- residential environment

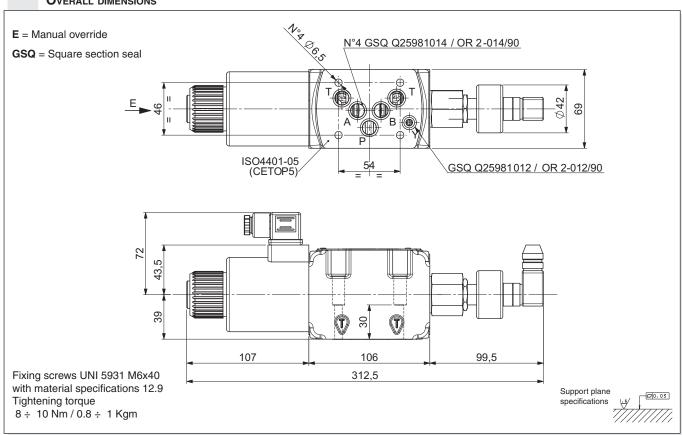
#### TAB.2 - DC VOLTAGE

| DC VOLTAGE **                                 |                  |                |  |  |
|-----------------------------------------------|------------------|----------------|--|--|
| L                                             | 12V              | 115Vac/50Hz    |  |  |
| M                                             | 24V              | 120Vac/60Hz    |  |  |
| N                                             | 48V*             | with rectifier |  |  |
| P                                             | 110V*            | 230Vac/50Hz    |  |  |
| Z                                             | 102V* ←          | 240Vac/60Hz    |  |  |
| Х                                             | 205V* ←          | with rectifier |  |  |
| W                                             | Without DC coils |                |  |  |
| and connectors                                |                  |                |  |  |
| Valtage and a support at anyoned on the plate |                  |                |  |  |

Voltage codes are not stamped on the plate, their are readable on the coils.

- \* Special voltage
- \*\* Technical data see page I 41

#### TAB1 - STANDARD SPOOL


| ONE SOLENOID |                                        |          |                    |  |
|--------------|----------------------------------------|----------|--------------------|--|
| Spool        | MAOBW                                  | Covering | Transient position |  |
| type         | [в/  " " " " " " р ] / р ]             |          |                    |  |
| 01E          |                                        | +        |                    |  |
| 01F          | WHITE                                  | +        |                    |  |
| 02E          | a/ XIII                                | -        | MHIM               |  |
| 02F          | WHILE                                  | -        |                    |  |
| 66E          |                                        | -        | MH!                |  |
| 06F          | WHILE                                  | -        | FIHM               |  |
| 16E          |                                        | +        |                    |  |
| 16F          | ~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | +        |                    |  |
| 32E          |                                        | +        |                    |  |

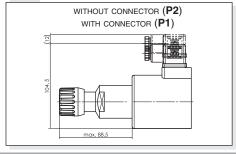
#### TAB.3 - VARIANTS

| TABLE VALIDATIO                       |       |
|---------------------------------------|-------|
| VARIANTS                              | CODE  |
| No variant (without connectors)       | S1(*) |
| Rotary emergency button               | P2(*) |
| Without proximity connector LVDT      | S3    |
| Without coils and proximity connector | S4    |
| With solenoid chamber external        |       |
| drainage (Y)                          | S5(*) |
| Other variants available on request.  |       |
| Other variants available on request.  |       |

(\*) Coils with Hirschmann connection supplied without connectors. The connectors can be ordered separately, ch. I page 20.

#### **O**VERALL DIMENSIONS






#### "D19" DC SOLENOIDS

#### খদ brevini

| Type of protection (in relation to the connector used) | IP 66        |
|--------------------------------------------------------|--------------|
| Number of cycle                                        | 18.000/h     |
| Supply tolerance                                       | ±10%         |
| Ambient temperature                                    | -54°C ÷ 60°C |
| Duty cycle                                             | 100% ED      |
| Max static pressure                                    | 210 bar      |
| Insulation class wire                                  | н            |
| Weight                                                 | 1,63 Kg      |

#### ROTARY EMERGENCY



| VOLTAGE<br>(V) | Max winding temperature (Ambient temperature25°C) | RATED<br>POWER<br>(W) | RESISTANCE AT 20°C (OHM) ±10% |
|----------------|---------------------------------------------------|-----------------------|-------------------------------|
| 12V            | 105°C                                             | 42                    | 3.43                          |
| 24V            | 105°C                                             | 42                    | 13.71                         |
| 48V*           | 105°C                                             | 42                    | 55                            |
| 102V(*)(**)    | 105°C                                             | 42                    | 248                           |
| 110V(*)(**)    | 105°C                                             | 42                    | 288                           |
| 205V(*)(**)    | 105°C                                             | 42                    | 1000                          |
| * Special      | voltage                                           |                       |                               |

The european low voltage directive is applied to electronical equipments used at a nominal voltages between 50 and 1000 VAC or 75 and 1500 VDC. In conformity with the low directive each part of the manifold or the subplate on which the valve is mounted should be connected to a protective earth with a resistence less than 0.1 ohms.



AD.3.I...

#### AD.3.I... AUTOMATIC RECIPROCATING **VALVES CETOP 3**

এদ brevini

These automatic reciprocating valves, with interface UNI ISO 4401 -03 - 02 - 0 - 94 standard (ex CETOP R 35 H 4.2-4-03), reverse the movement of an actuator every time the flow through the valve stops.

With no max. pressure valves inside the body, the spool is moved by two springs and locked by unbalanced pressure inside valve; when no more flow is crossing the valve, the spool changes the position inverting the direction of the actuator.

Max. operating pressure port P 320 bar 30 l/min Max. flow Minimum permitted flow 3 l/min Fluid viscosity 20 ÷ 200 mm<sup>2</sup>/s Fluid temperature -20°C ÷ 60°C Max. contamination level(\*) class 10 in accordance with NAS 1638 with filter B<sub>25</sub>≥75 Positioner activating force 130 N

(measured with 1 bar on the T line)

Weight of version without positioner 0.95 Kg Weight of version with positioner 1 Kg

(\*) Max contamination level must be respect to obtain the right function of the valve

With a preferential starting  $P \rightarrow B$ 

and A  $\stackrel{\cdot}{\to}$  T position, these valves are mainly used to control the movement compactors or system where is not possible to use electrical device.

#### **O**RDERING CODE

AD 3

Directional valve

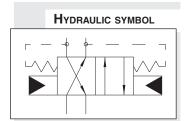
CETOP 3/NG6

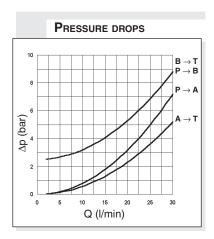
Automatic reciprocating valve at null flow

\* (1)

P = Version with positioner to adjust the pressure relief valve of the system

\*\*


00 = No variant V1 = Viton


1

Serial No.

(1) Omit if not required the positioner

Tests carried out with mineral oil at a temperature of 40°C with viscosity of 46 mm<sup>2</sup>/s.





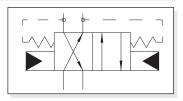
#### **OVERALL DIMENSIONS**

### With positioner (P) Without positioner 108 OR 2-012/90 Fixing screws UNI 5931 M5x40 with material specifications min. 8.8 Tightening torque 5 Nm / 0.5 Kgm Support plane **□**0.03 21.3 19.2



#### AD.5.I...

# AD.5.I... AUTOMATIC RECIPROCATING VALVES CETOP 5


The operating principle of this type of inverter valve, with interface UNI ISO 4401 - 05 - 04 - 0 - 94 standard (ex CETOP R 35 H 4.2-4-05), is based on the pressure unbalanced created in its interior as a consequence of the fluid flow rate. On starting the system this valve assumes always a preferential position  $P\to B\ e\ A\to T.$ 

When a pressure is applied to the cylinder which exceeds the system maximum pressure relief valve setting (e.g. end stroke actuator), a hydraulic unbalanced is generated capable of changing over the valve and inverting the cylinder direction of the movement.

খ্যদ brevini

(measured with 1 bar on the T line)Weight of version without positioner3,4 KgWeight of version with positioner3,6 Kg

(\*) Max contamination level must be respect to obtain the right function of the valve



#### **O**RDERING CODE

AD Directional control

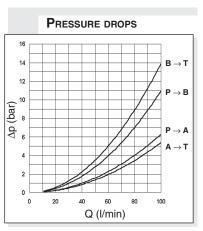
5 CETOP 5/NG10

I

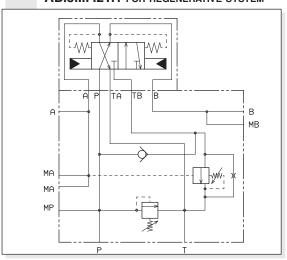
Р

\*\*

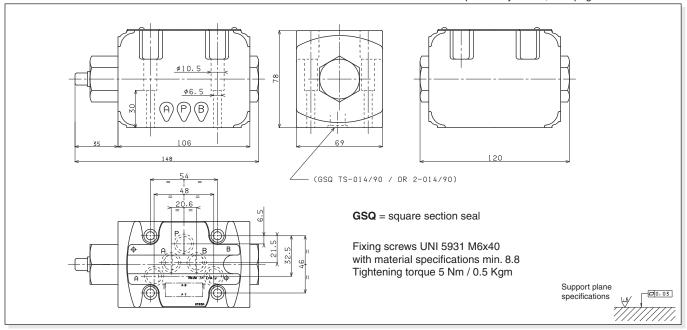
1


Automatic reciprocating valve at null flow

Version with positioner to adjust the pressure relief valve of the system


00 = No variantV1 = Viton2T = Variant for regenerativesystem

Serial No.


Tests carried out with mineral oil a temperature of 40°C with a viscosity of 46 mm²/s.



#### AD.5.I.P.2T.1 FOR REGENERATIVE SYSTEM



Version AD.5.I.P.2T.1 integrated in a regenerative circuit for compactors with roll on-off mobile system, solution useful for all applications where to connect microswitch of proximity is not possible. For any information about our regenerative manifold Aron please contact our technical department. For special subplate BS.5.RIA see Chapter X "Systems", next pages.





#### AD.3.RI...

#### **ORDERING CODE**

AD

Directional valve

3

CETOP 3/NG6

RI

Automatic reciprocating valve hydraulically operated automatic reciprocation

211

Scheme

Z

No voltage

Setting ranges:

 $1 = 15 \div 50 \text{ bar}$ 

 $2 = 20 \div 140 \text{ bar}$ 

 $3 = 50 \div 320 \text{ bar}$ 

\*\*

00 = No variant

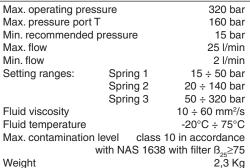
V1 = Viton

3

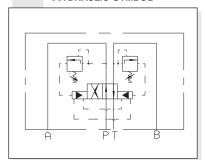
Serial No.

#### AD.3.RI... AUTOMATIC RECIPROCATING **VALVES CETOP 3**

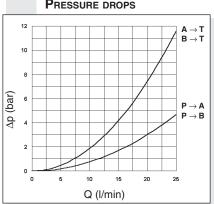
This valve type is characterized by fully hydraulic operation, as it takes advantage of the system pressure rise to cause an automatic and continuous inversion of the utilization. The changeover takes place when the system pressure exceeds the inversion valves calibration pressure, and therefore also in not predetermined positions. At cylinder stroke end, the overall maximum

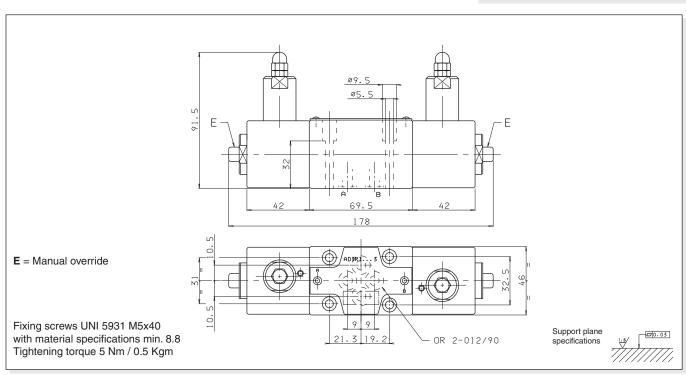

operating pressure. The inverter valves pressure calibration values should be 15% lower than that of the overall maximum pressure valve, and 15% higher than the maxi-

pressure valve should be adjusted on


a value 30% higher than the system

Note: to operate the push button emergency, a minimum pressure of 3 bar on the actuator is needed.


mum operating pressure.




#### HYDRAULIC SYMBOL



#### PRESSURE DROPS







#### AD.5.Rl...

#### ORDERING CODE

AD

Directional valve

5

CETOP 5/NG10

RI

Automatic reciprocating valve hydraulically operated automatic reciprocation

211

Scheme

Z

No voltage

\*

Setting ranges:

 $1 = 15 \div 50 \text{ bar}$ 

 $2 = 20 \div 140 \text{ bar}$ 

 $3 = 50 \div 320 \text{ bar}$ 

3 =

00 = No variant

V1 = Viton

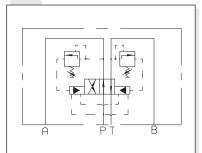
Serial No.

\_3\_)

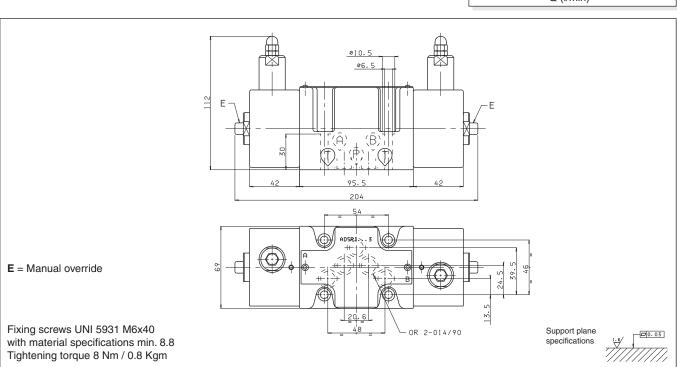
\*\*

# AD.5.RI... AUTOMATIC RECIPROCATING VALVES CETOP 5

খ্যদ brevini


This valve type is characterized by a fully hydraulic operation, as it takes advantage of the system pressure rise to cause an automatic and continuous inversion of the utilization. The changeover takes place when the system pressure exceeds the inversion valves calibration pressure, and therefore also in not predetermined position. At the cylinder stroke end, the overall maximum pressure valve should be adjusted on a value 30% higher than the system operating pressure.

The inverter valves pressure calibration values should be 15% lower than that of the overall maximum pressure valve, and 15% higher than the maximum operating pressure.


Note: to operate the push button emergency, a minimum pressure of 3 bar on the actuator is needed.

320 bar Max. operating pressure Max. pressure port T 160 bar Min. recommended pressure 15 bar Max. flow 70 l/min Min. flow 6 l/min Setting ranges: 15 ÷ 50 bar Spring 1 Spring 2 20 ÷ 140 bar Spring 3 50 ÷ 320 bar Fluid viscosity 10 ÷ 60 mm<sup>2</sup>/s -20°C ÷ 75°C Fluid temperature Max. contamination level class 10 in accordance with NAS 1638 with filter  $\beta_{25} \ge 75$ Weight 5,4 Kg

#### HYDRAULIC SYMBOL



# 





# ADPH.5... STANDARD SPOOLS FOR ADPH.5 CH. I PAGE 47 TECH. SPECIFICATIONS ADPH5 CH. I PAGE 48 CETOP 2/NG04 CH. I PAGE 2 AD.2.E... CH. I PAGE 4 "A09" DC COILS CH. I PAGE 4 STANDARD CONNECTORS CH. I PAGE 20

# ADPH.5... PILOTED VALVES CETOP 5/NG10 WITH CETOP 2/NG4 PILOT VALVE

এদ brevini

These ADPH 5 valves are used primarily for controlling the starting, stopping and direction of fluid flow. These kind of distributors are composed by a main stage crossed by the big flow from the pump (ADPH.5) and by a cetop 2 pilot directional solenoid valve (AD.2.E) available with different mounting type .

When a short response time is requested, a special version of solenoids with high dynamics is available with the code AD.2.E.\*\*.\*.\*FF.2 (Please, contact our Technical Aron Service).

# HYDRAULIC SYMBOL

#### **ORDERING CODE**

(ADPH) Pilo

Piloted valve

The pilot valves AD.2.E... must be ordered separately

5 | CETOP 5/NG10

\*\* ) | Spool type (Table next page)

Mounting (Table next page)
Standard orifice at port P: Ø 1mm

Orifice type on
Cetop 2 valves (Table 1) **0** = none

A/B/C/D/E/F/G = orifice on line A

H/I/L/M/N/P/Q = orifice on line B

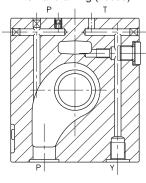
Piloting and draining type (Tab.2)

I = internal piloting internal draining

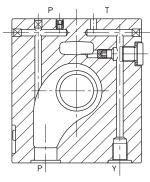
**E** = internal piloting external draining

X = external piloting internal draining (special body)

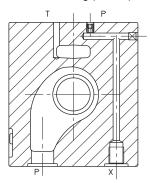
No variant


Serial No.

00


1

#### TAB.1 - ORIFICE ON LINE A/B On line B On line A ø(mm) None 0,5 В 0.6 С 0.7 D 0,8 Е Ν 0.9 G Q 1,2


# Internal piloting Internal draining (I code)



Internal piloting External draining (**E** code)



External piloting Internal draining (X code)



#### HYDRAULIC SYMBOLS, SPOOLS AND MOUNTING

| HYDRAULIC SYMBOLS, SPOOLS AND MOUNTING |              |          |                    |  |  |
|----------------------------------------|--------------|----------|--------------------|--|--|
|                                        | "A" MOUNTING |          |                    |  |  |
| Pilot<br>Piloted                       |              |          |                    |  |  |
| Scheme                                 |              |          |                    |  |  |
| Spool<br>type                          | A a o        | Covering | Transient position |  |  |
| 01                                     |              | +        |                    |  |  |
| 02                                     |              | -        |                    |  |  |
| 03                                     | T T          | -        |                    |  |  |
| 04*                                    |              | -        |                    |  |  |
| 06                                     | XH           | +        | XIII               |  |  |
| 15                                     | XIII         | -        | XHII               |  |  |
| 16                                     |              | +        | XIII               |  |  |

|                  |       | "С" моинт | ING                |  |
|------------------|-------|-----------|--------------------|--|
| Pilot<br>Piloted |       |           |                    |  |
| Scheme           |       |           |                    |  |
| Spool<br>type    | a o b | Covering  | Transient position |  |
| 01               |       | +         | XXXIII             |  |
| 02               | XHII  | -         | XHHHI              |  |
| 03               | XHI   | -         |                    |  |
| 04*              |       | -         |                    |  |
| 06               | XHI   | +         | XIIIII             |  |

#### (\* Spools with price increasing)

|                  | "B" MOUNTING               |          |                    |  |
|------------------|----------------------------|----------|--------------------|--|
| Pilot<br>Piloted |                            |          |                    |  |
| Scheme           |                            |          | 7 B                |  |
| Spool<br>type    | А́В<br><u>~</u> О Ь<br>Р Т | Covering | Transient position |  |
| 01               |                            | +        |                    |  |
| 02               |                            | -        |                    |  |
| 03               |                            | -        |                    |  |
| 04*              | L TX                       | -        |                    |  |
| 06               |                            | +        |                    |  |
| 15               | XIII                       | -        | XHII               |  |
| 16               | XIII                       | +        | XIII               |  |

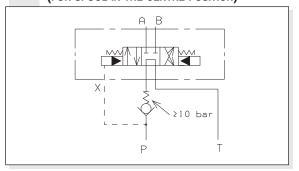
#### PRESSURE DROPS



The diagram at the side shows the pressure drop curves for spools during normal usage. The used fluid is a mineral oil with a viscosity of  $46\,\text{mm}^2\text{/s}$  at  $40\,^\circ\text{C}$ ; the tests have been carried out at a fluid temperature of  $40\,^\circ\text{C}$ . For flow rates higher than those in the diagram, the losses will be those expressed by the following formula:

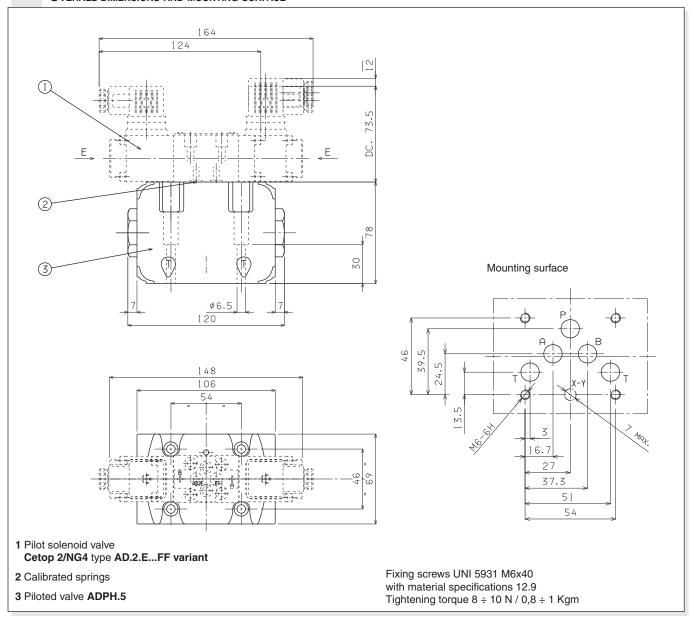
$$\Delta p1 = \Delta p \times (Q1/Q)^2$$

where  $\Delta p$  will be the value for the losses for a specific flow rate Q which can be obtained from the diagram,  $\Delta p1$  will be the value of the losses for the flow rate Q1 that is used.

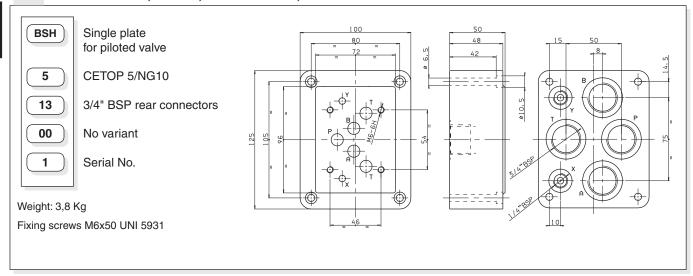

| Spool<br>type | Connections |           |     |     |     |
|---------------|-------------|-----------|-----|-----|-----|
| type          | P→A         | P→B       | A→T | В→Т | P→T |
| 01            | 4           | 4         | 7   | 7   |     |
| 02            | 6           | 6         | 8   | 8   | 7   |
| 03            | 3           | 3         | 8   | 8   |     |
| 04            | 4           | 4         | 2   | 2   | 3   |
| 06            | 4           | 4         | 7   | 8   |     |
| 15            | 2           | 2         | 5   | 5   |     |
| 16            | 1           | 1         | 2   | 2   |     |
|               |             | Curve No. |     |     |     |

#### PILOT SOLENOID CONTROL VALVE SPECIFICATIONS

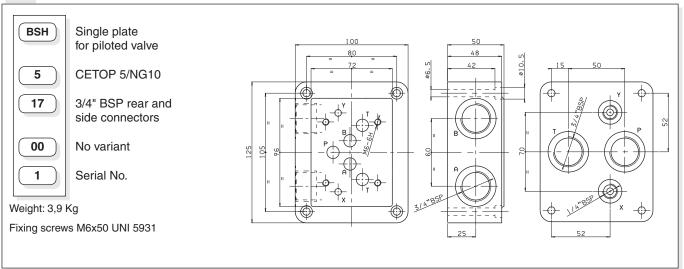
| Max. operating pressure: ports P/A/B       | 250 bar                                       |
|--------------------------------------------|-----------------------------------------------|
| Max. operating pressure: port T (dynamic)  | 70 bar                                        |
| Max. piloting pressure                     | 250 bar                                       |
| Min. piloting pressure                     | 10 bar                                        |
| Max. flow                                  | 120 l/min                                     |
| Switching times (*see note below)          | Energizing: 20 ms                             |
|                                            | De-energizing: 50 ms                          |
| Piloting oil volume for engagement         | 1 cm <sup>3</sup>                             |
| Hydraulic fluid                            | mineral oil DIN 51524                         |
| Fluid viscosity                            | 10 ÷ 500 mm <sup>2</sup> /s                   |
| Fluid temperature                          | -20°C ÷ 75°C                                  |
| Max. contamination level                   | class 10 in accordance                        |
|                                            | with NAS 1638 with filter B <sub>25</sub> ≥75 |
| Mounting                                   | plate                                         |
| Weight ADPH5 without pilot valve           | 3,4 Kg                                        |
| Weight ADPH5 with pilot valve with one so  | lenoid 4,3 Kg                                 |
| Weight ADPH5 with pilot valve with two sol | enoids 4,5 Kg                                 |
| ·                                          | _                                             |
|                                            |                                               |


(\*) All the tests have been carried out with AD.2.E pilot valve with variant FF, mounting type C, spool 03, flow 100 l/min,pressure 160 bar, back pressure on the T line of 2 bar and oil temperature  $40^{\circ}$ C.

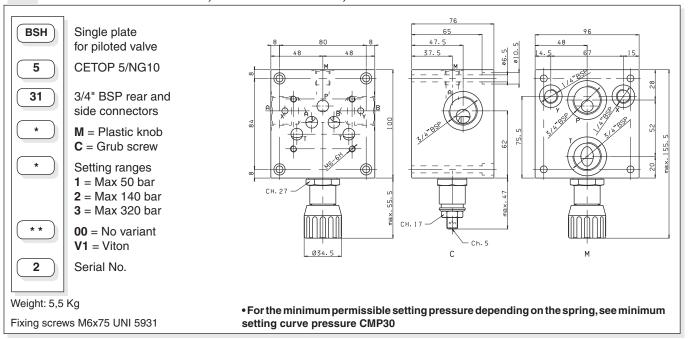
## EXTERNAL BACK PRESSURE ON LINE P (FOR SPOOL IN THE CENTRE POSITION)




When the main spool connect P to T in the centre position, the minimum pressure of 10 bar is needed to move the main spool (see the "Specifications"); for this reason a check valve on the P line (see the drawing above) is necessary.


#### OVERALL DIMENSIONS AND MOUNTING SURFACE




#### BSH.5.13 WITH P, T AND A, B REAR 3/4" BSP, X AND Y CLEARANCE HOLES



#### BSH.5.17 WITH P AND T REAR AND A, B SIDE 3/4" BSP, X AND Y CLEARANCE HOLES



#### BSH.5.31 WITH P AND T REAR, A AND B SIDE 3/4" BSP, X AND Y CLEARANCE HOLES WITH MAXIMUM PRESSURE VALVE





| ADH.5                      |                 |  |  |  |  |
|----------------------------|-----------------|--|--|--|--|
| STANDARD SPOOLS FOR ADH.5  | Ch. I page 50   |  |  |  |  |
| Tech. specifications ADH.5 | Ch. I PAGE 51   |  |  |  |  |
| SUBPLATES BSH.5            | Ch. I PAGE 52   |  |  |  |  |
| CMP.30 BFP CARTE           | RIDGE CATALOGUE |  |  |  |  |
| CETOP 3/NG06               | Ch. I PAGE 8    |  |  |  |  |
| STANDARD SPOOLS FOR AD.3.E | Ch. I PAGE 10   |  |  |  |  |
| AD.3.E                     | Ch. I PAGE 11   |  |  |  |  |
| "D15" DC coils             | Ch. I PAGE 19   |  |  |  |  |
| "B14" AC SOLENOIDS         | Ch. I PAGE 19   |  |  |  |  |
| STANDARD CONNECTORS        | Ch. I PAGE 20   |  |  |  |  |
|                            |                 |  |  |  |  |

#### **O**RDERING CODE

(ADH)

Piloted valve (Pilot valve and any mounting valves should be ordered separately)



CETOP 5/NG10



Mounting type (Table next page)



Spool type (Table next page)



Piloting and draining

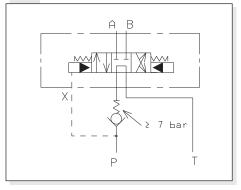
I = X internal / Y internal

IE = X internal / Y external

EI = X external / Y internal

**E** = X external / Y external (see diagram at side)

\*\*


00 = No variant

LC = Main spool stroke limiter

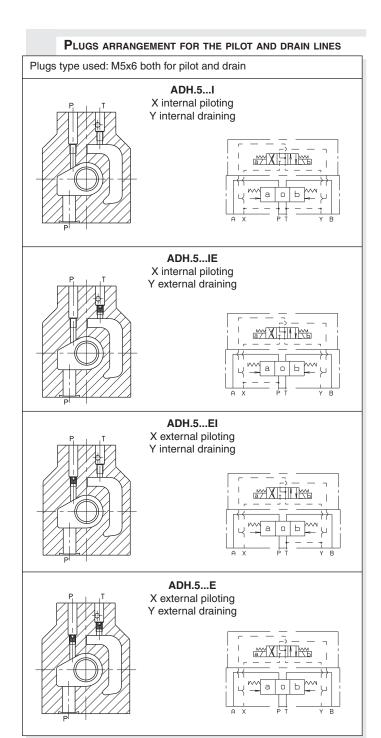


Serial No.

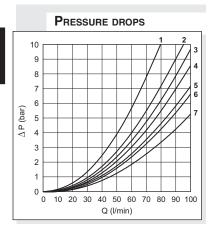
#### EXTERNAL CHECK ON P



# ADH.5... 4/3 AND 4/2 PILOTED VALVES CETOP 5/NG10




Type ADH.5 distributors are intended for interrupting, inserting and diverting a hydraulic system flow. Normally these distributors are composed of a main stage, crossed by circuit main flow, and of a pilot stage available in several versions.


Various types of controls are available, used either individually or in combination for, among other functions, stroke limitation and main spool movement speed control, in order to optimize the hydraulic system operation where this type of valve is employed.

In those case where normally to drain spools are used, it is necessary to remember that the minimum changeover pressure due to the opposing springs is equal to approximately 7 bar (see the operating features table on page I•46) and consequently necessary to insert a check valve in the P way (as shown above).

- Mounting surface in accordance with UNI ISO 4401 05 05 0 94 standard (ex CETOP R 35 H 4.2-4-05).
- Pilot operated spool, solenoid controller.
- Stroke control of main spool.
- Presetting for pressure reducing valve mounting.
- Presetting for single-acting throttle valve mounting.



1



The diagram an the side shows the pressure drops in relation to spools adopted for normal usage (see table).

Tests carried out at a constant temperature of 40°C.

The fluid used was a mineral based oil with a viscosity of 46 mm $^2$ /s at 40 $^\circ$ C.

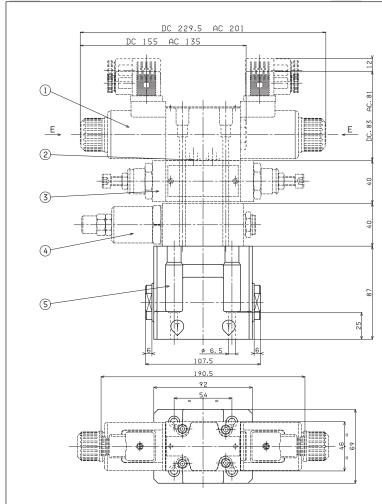
| Spool | Connections |        |        |        |     |
|-------|-------------|--------|--------|--------|-----|
| type  | P→A         | Р→В    | A→T    | В→Т    | P→T |
| 01    | 3           | 3      | 5      | 5      |     |
| 02    | 3           | 3      | 6      | 6      | 3   |
| 03    | 3           | 3      | 6      | 6      |     |
| 04    | 2<br>3      | 2<br>3 | 5      | 5<br>5 | 1   |
| 05    | 3           |        | 5      | 5      |     |
| 06-66 | 3           | 3      | 6      | 6      |     |
| 07    |             | 1      | 6      |        |     |
| 10    | 3           | 3      | 6<br>5 | 5      |     |
| 11    | 4           |        | 5      |        |     |
| 22    |             | 4      | 5      |        |     |
| 14-28 | 3           | 3      | 7      | 7      | 2   |
| 15    | 3           | 3<br>3 | 4      | 5<br>5 |     |
| 16    | 3<br>3      | 3      | 4      | 5      |     |
| 17    | 3           | 3      |        |        |     |
|       | Curve No.   |        |        |        |     |

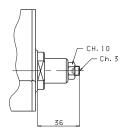
| Sp               | OOLS AND MOUNTING TYPE |                        |                        | (* Spools with price increasing) |
|------------------|------------------------|------------------------|------------------------|----------------------------------|
|                  | C mounting             | A mounting             | B mounting             | P mounting                       |
| Pilot<br>Piloted | AD.3.E.03.C<br>ADH.5.C | AD.3.E.03.E<br>ADH.5.A | AD.3.E.03.F<br>ADH.5.B | AD3E16E/AD3E16F<br>ADH.5.P       |
| Scheme           |                        |                        |                        |                                  |
| type             |                        | H X PI Y B             | A X PT Y B             |                                  |
| 01               |                        |                        |                        |                                  |
| 02               | XHHHD                  |                        |                        | XHII                             |
| 03               |                        |                        |                        |                                  |
| 04*              |                        | 1 1 1 2 C 2 K 1 1 1    |                        |                                  |
| 05               |                        |                        |                        | XHII                             |
| 66               |                        |                        |                        | XIII                             |
| 06               |                        |                        |                        | XHII                             |
| 07*              | XXIII                  |                        |                        | XHE                              |
| 10*              |                        |                        |                        | XHII                             |
| 11*              |                        |                        |                        | Elina<br>Bina                    |
| 22*              |                        |                        |                        | Xi.iE                            |
| 14*              |                        |                        | EIXX                   |                                  |
| 28*              |                        |                        |                        |                                  |
| 15               |                        | XHII                   | XHII                   |                                  |
| 16               |                        |                        | XIIII                  |                                  |
| 17               |                        |                        |                        |                                  |

#### PILOT SOLENOID CONTROL VALVE SPECIFICATIONS

FOR DIFFERENT CONTROLS, PLEASE CONTACT OUR TECHNICAL ARON SERVICE

| Max. operating pressure ports P/A/B              | ;                    | 320 bar               |
|--------------------------------------------------|----------------------|-----------------------|
| Max. operating pressure port T (int. drainage)   |                      | 160 bar               |
| Max. pressure on T (ext. drainage)               |                      | 250 bar               |
| Max. piloting pressure                           |                      | 250 bar               |
| Min. piloting pressure                           |                      | 7 bar                 |
| Max. flow                                        | 10                   | 00 l/min              |
| Piloting oil volume engagement 3 position valves | S                    | 0,8 cm <sup>3</sup>   |
| Piloting oil volume engagement 2 position valves | S                    | 1,6 cm <sup>3</sup>   |
| Hydraulic fluid                                  | mineral oil DIN      | l 51524               |
| Fluid viscosity                                  | 10 ÷ 500             | ) mm²/s               |
| Fluid temperature                                | -20°C                | ÷ 75°C                |
| Max. contamination level                         | class 10 in accordar | nce with              |
|                                                  | NAS 1638 with filter | . ß <sub>25</sub> ≥75 |
| Weight ADH5 without pilot valve                  |                      | 2,7 Kg                |
| Weight ADH5 with pilot valve with 1 AC solenoid  | d                    | 4 Kg                  |
| Weight ADH5 with pilot valve with 1 DC solenoid  | d                    | 4,2 Kg                |
| Weight ADH5 with pilot valve with 2 AC solenoid  | ds                   | 4,3 Kg                |
| Weight ADH5 with pilot valve with 2 DC solenoid  | ds                   | 4,7 Kg                |


| Sw | ITCHING | TIMES | PILOTED | VALV | Ε |
|----|---------|-------|---------|------|---|
|    |         |       |         |      |   |


| OPERATING<br>PRESSURE<br>(bar) | CURRENT     | ENERGIZING<br>centre-extern<br>(ms) | DE-ENERGIZING<br>extern-centre<br>(ms) |
|--------------------------------|-------------|-------------------------------------|----------------------------------------|
| 50<br>100<br>200               | ALTERNATING | 30<br>25<br>20                      | 50                                     |
| 50<br>100<br>200               | DIRECT      | 40<br>35<br>30                      | 60                                     |

3 position valve. The values are indicative and depend on the hydraulic circuit, the fluid used and the variations in pressure, flow rate and temperature.

#### OVERALL DIMENSIONS

#### **CETOP 5 MOUNTING SURFACE**





SPOOL STROKE ADJUSTMENT

- Piloted solenoid valve type AD3E... CETOP 3/NG6
   Calibrated diaphragms for AD3E...
   Flow regulation valve type AM3QF..C

- 4 Pressure reduction valve type AM3RD..C 5 Main valve type ADH5..E

Fixing screws UNI 5931 M6x35 with material specifications 12.9 Tightening torque 8 N / 0,8 Kgm



| ADH.7                      |                  |
|----------------------------|------------------|
| STANDARD SPOOLS FOR ADH.7  | Ch. I page 54    |
| Tech. specifications ADH.7 | Ch. I page 55    |
| SUBPLATES BSH.7            | CH. I PAGE 56/57 |
| CETOP 3/NG06               | Ch. I page 8     |
| STANDARD SPOOLS FOR AD.3.E | Ch. I PAGE 10    |
| AD.3.E                     | CH. I PAGE 11    |
| ADC.3                      | Ch. I page 5     |
| "A09" DC Coils             | Ch. I page 7     |
| "D15" DC Coils             | Ch. I page 19    |
| "B14" AC SOLENOIDS         | Ch. I page 19    |
| STANDARD CONNECTORS        | Ch. I PAGE 20    |

#### **ORDERING CODE**

ADH

Piloted valve - Pilot valves and any modulating valves should be ordered separately

7

CETOP 7/NG16

Mounting type (see next page)

\*\*

Spool type (see next page)

\*

Piloting and draining

I = X internal / Y internal IE = X internal / Y external

EI = X external / Y internal

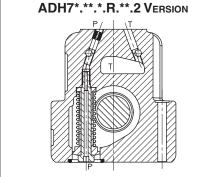
**E** = X external / Y external

(see Tab.1 at side)

R

Check valve incorporated at port P (Tab. 2) Only for I and IE versions (omit if not required)

\*\*


2

00 = No variant

LC = Main spool stroke limiter

Serial No.

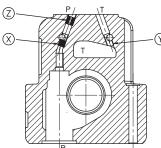
#### TAB. 2 - INTERNAL CHECK ON P

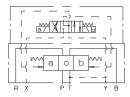


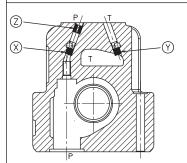
• For the spools 02-04-14-28 the piloting is normally external; the internal piloting is possible only with the internal check valve (R).

#### ADH.7... 4/3 AND 4/2 PILOTED VALVES CETOP 7/NG16

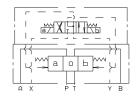
এন brevini

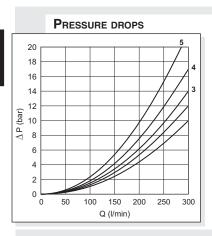

Type ADH.7 distributors are intended for interrupting, inserting and diverting a hydraulic system flow. Normally these distributors are composed of a main stage, crossed by the circuit main flow, and of a pilot stage available in several versions.


Various types of controls are available, used either individually or in combination for, among other functions, stroke limitation and main spool movement speed control, in order to optimize the hydraulic system operation where this type of valve is employed.


In those cases where normally to drain spools are used, it is necessary to remember that the minimum changeover pressure due to the opposing springs is equal to approximately 5 bar (see the operating features table next pages) and it is consequently necessary to specify when ordering the check valve incorporated in the P line, if required (as shown below).

- Mounting surface in accordance with UNI ISO 4401 07 06 0 94 standard (ex CETOP R 35 H 4.2-4-07).
- Pilot operated spool, solenoid controller.
- Stroke control of main spool.
- Presetting for pressure reducing valve mounting.
- · Presetting for single-acting throttle valve mounting.


TAB.1 - PLUGS ARRANGEMENT FOR THE PILOT AND DRAIN LINES Plugs type used: M5x5 both for pilot and drain. Note: standard M6x6 orifice Ø1,5 insert in the P port (Z) ADH.7...I X internal piloting Y internal draining (X) ADH.7...IE X internal piloting Y external draining ADH.7...EI X external piloting Y internal draining

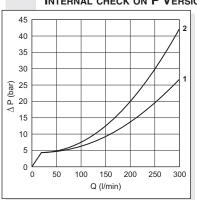







ADH.7...E X external piloting Y external draining

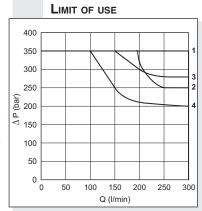





The two diagrams show the "Pressure drops" in relation to spools adopted for normal usage (see table).

The fluid used was a mineral based oil with a viscosity of 46 mm²/s at 40° C.

| Spool | Connections               |                   |        |                   |        |     |
|-------|---------------------------|-------------------|--------|-------------------|--------|-----|
| type  |                           | $P \rightarrow A$ | P→B    | $A \rightarrow T$ | В→Т    | P→T |
| 01    | ENERGIZING<br>DE-ENERGIZ. | 2                 | 1      | 3                 | 3      |     |
| 02    | ENERGIZING<br>DE-ENERGIZ. | 1                 | 1      | 3                 | 3      | 2   |
| 03    | ENERGIZING<br>DE-ENERGIZ. | 2                 | 1      | 3                 | 3      |     |
| 04    | ENERGIZING DE-ENERGIZ.    | 2                 | 2      | 4                 | 4      | 5   |
| 05    | ENERGIZING<br>DE-ENERGIZ. | 1 2               | 1<br>2 | 2                 | 2      |     |
| 66    | ENERGIZING<br>DE-ENERGIZ. | 1                 | 1      | 2                 | 3<br>4 |     |
| 10    | ENERGIZING                | 2                 | 1      | 3                 | 3      |     |
| 14    | ENERGIZING<br>DE-ENERGIZ. | 1                 | 1      | 3                 | 3      | 4   |
| 28    | ENERGIZING<br>DE-ENERGIZ. | 1                 | 1      | 3                 | 3      | 4   |
| 23    | ENERGIZING<br>DE-ENERGIZ. | 2                 | 1      | 3                 | 3      |     |
|       | Curve No.                 |                   |        |                   |        |     |


### PRESSURE DROPS FOR INTERNAL CHECK ON P VERSION



| Spool | Connections |     |     |  |  |  |  |
|-------|-------------|-----|-----|--|--|--|--|
| type  | P→A         | Р→В | P→T |  |  |  |  |
| 02    | 1           | 1   | 1   |  |  |  |  |
| 04    | 1           | 1   | 2   |  |  |  |  |
|       | Curve No.   |     |     |  |  |  |  |

The limit of use test has been carried out with external draining and orifice  $\emptyset$ 1,5 insert in the P port (Z). The fluid used was a mineral based oil with a viscosity of 46 mm²/s at  $40^{\circ}$  C.

(\*) For the "E mounting" the locating spring works only with the steady system (\* Spools with price increasing)



|               | _            |
|---------------|--------------|
| Spool<br>type | No.<br>Curve |
| 01            | 1            |
| 02            | 2            |
| 03            | 1            |
| 04            | 3            |
| 05            | 1            |
| 66            | 1            |
| 10            | 1            |
| 14            | 4            |
| 28            | 4            |
| 23            | 1            |
|               |              |

#### Spools and mounting type

| 0.               | C mounting A mounting B mounting E mounting P mounting |                        |                        |                        |                            |  |  |
|------------------|--------------------------------------------------------|------------------------|------------------------|------------------------|----------------------------|--|--|
| Pilot<br>Piloted | AD.3.E.03.C<br>ADH.7.C                                 | AD.3.E.03.E<br>ADH.7.A | AD.3.E.03.F<br>ADH.7.B | AD.3.E.16.E<br>ADH.7.E | AD3E16E/AD3E16F<br>ADH.7.P |  |  |
| Spool type       | A X PT Y B                                             |                        | A X PT Y B             | a X PT Y B             | A X PT Y B                 |  |  |
| 01               |                                                        |                        |                        |                        |                            |  |  |
| 02               |                                                        |                        |                        |                        | MHM                        |  |  |
| 03               |                                                        |                        |                        |                        |                            |  |  |
| 04*              |                                                        |                        |                        |                        |                            |  |  |
| 05               |                                                        | XXI                    |                        |                        | XHI                        |  |  |
| 66               |                                                        |                        |                        |                        |                            |  |  |
| 10*              |                                                        |                        |                        |                        |                            |  |  |
| 14*              |                                                        |                        |                        |                        |                            |  |  |
| 28*              |                                                        |                        |                        |                        |                            |  |  |
| 23*              |                                                        |                        | T T K X X              |                        |                            |  |  |

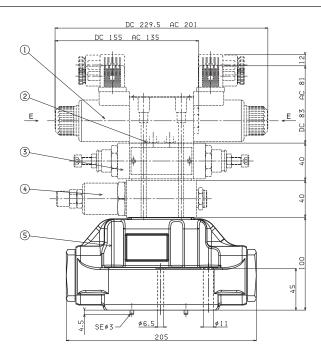
#### PILOT SOLENOID CONTROL VALVE SPECIFICATIONS

FOR DIFFERENT CONTROLS, PLEASE CONTACT OUR TECHNICAL ARON SERVICE

| Max. operating pressure ports P/A/B                | 350 bar                                  |
|----------------------------------------------------|------------------------------------------|
| Max. operating pressure port T (int. drainage)     | 160 bar                                  |
| Max. operating pressure port T (ext. drainage)     | 250 bar                                  |
| Max. piloting pressure                             | 210 bar                                  |
| Min. piloting pressure*                            | 12 bar                                   |
| Max flow                                           | 300 l/min.                               |
| Piloting oil volume for engagement 3 position valv | res 4 cm <sup>3</sup>                    |
| Piloting oil volume for engagement 2 position val  | ves 8 cm <sup>3</sup>                    |
| Hydraulic fluid                                    | mineral oil DIN 51524                    |
| Fluid viscosity                                    | $2.8 \div 380 \text{ mm}^2/\text{s}$     |
| Fluid temperature                                  | -20°C ÷ 70°C                             |
| Ambient temperature                                | -20°C ÷ 50°C                             |
| Max. contamination level                           | class 10 in accordance with              |
|                                                    | NAS 1638 with filter ß <sub>25</sub> ≥75 |
| Weight ADH7 without pilot valve                    | 7 Kg                                     |
| Weight ADH7 with pilot valve with 1 AC solenoid    | 8,2 Kg                                   |
| Weight ADH7 with pilot valve with 1 DC solenoid    | 8,4 Kg                                   |
| Weight ADH7 with pilot valve with 2 AC solenoids   | 8,5 Kg                                   |
| Weight ADH7 with pilot valve with 2 DC solenoid    | s 9 Kg                                   |

**Note**: the solenoid valve type **ADC.3.E...** (with A09 coil) and **AD3.E...** (with D15 or B14 coils) could be used both as pilote valve, without any changement of technical features.

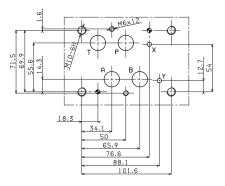
\* For valves with internal drain (Y), tank pressure on T must be added to min. piloting pressure.


For version "R" with check valve on P, the cracking pressure of 5 bar is obtained with flow rate > 25 l/min.

#### Switching time

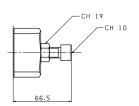
Such values refer to a tests carried out with Aron solenoid valve type AD3E03 with P = 100 bar pressure and Q = 100 l/min flow. Orifice  $\emptyset$ 1.5 mm, insert on piloting port, using a mineral oil at 40°C. with 46 mm²/s viscosity.

#### TEMPI DI RISPOSTA VALVOLA PILOTATA

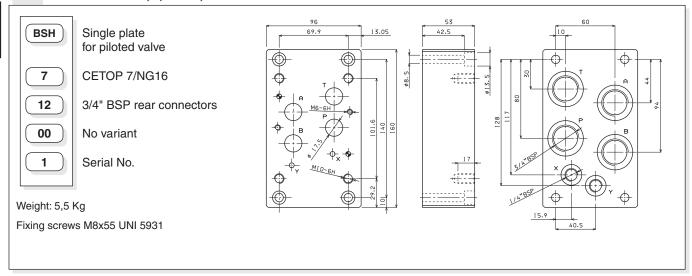

| Solenoids | ENERGIZING ±10% (ms) |          |          |             | DE-ENERGIZING ±10% (ms) |             |  |
|-----------|----------------------|----------|----------|-------------|-------------------------|-------------|--|
| No. Spool | 01 - 03              |          |          |             | 01 - 03                 |             |  |
| Scheme    | 2 positions 3 p      |          | ositions | 2 positions | 3 positions             |             |  |
| AC        | 50                   | 20       |          | 20          | 25                      | 30          |  |
| DC        | 70                   |          |          | 35          | 40                      | 50          |  |
| No. Spool | 02                   | C        | 14       | 02 - 04     | 02 -                    | - 04        |  |
| Scheme    | 2 posit.             | 2 posit. |          | 3 posit.    | 2 positions             | 3 positions |  |
| AC        | 35                   | 6        | 0        | 30          | 25                      | 25          |  |
| DC        | 55                   | 8        | 0        | 40          | 40                      | 50          |  |



# 51.7 101.6 51.7


- 1 Piloted solenoid valve type AD3E... or ADC.3.E... CETOP 3/NG6
- 2 Calibrated diaphragms AD3E...
- 3 Flow regulation valve type AM3QF..C
- 4 Pressure reduction valve type AM3RD..C
- 5 Main valve type ADH7..E

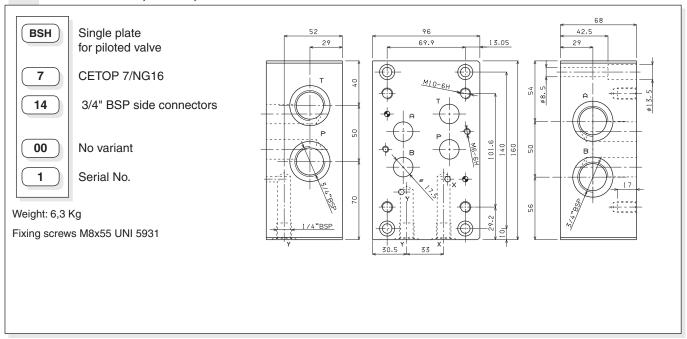
#### **CETOP 7 MOUNTING SURFACE**



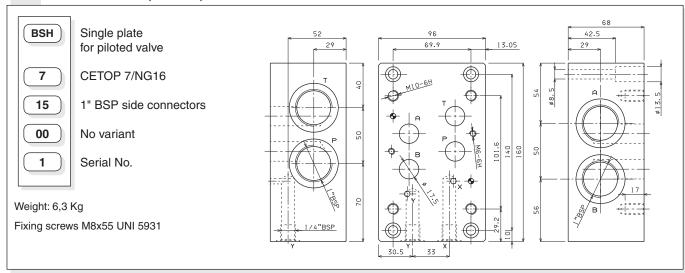

- Piloted valve fixing:
  - $n^{\circ}$  4 screws T.C.E.I. M10x60 Tightening torque 40 Nm  $n^{\circ}$  2 screws T.C.E.I. M6x55 Tightening torque 8 Nm
- Seals:
- n° 4 OR 2-118 PARKER (type 130) n° 2 OR 2-013 PARKER (type 2043)


#### SPOOL STROKE ADJUSTMENT

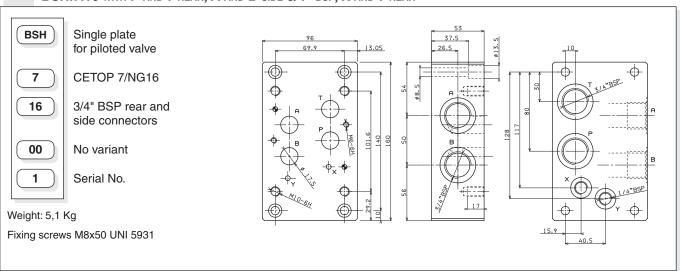



#### BSH.7.12 WITH P, T, AND A, B REAR 3/4" BSP

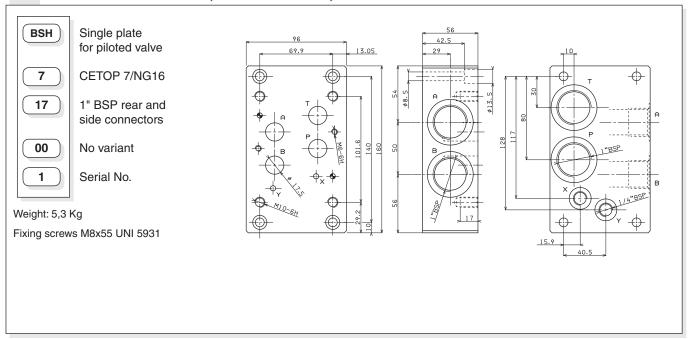



#### BSH.7.13 WITH P, T AND A,B REAR 1" BSP




#### BSH.7.14 WITH P, T AND A, B SIDE 3/4" BSP




#### BSH.7.15 WITH P, T AND A, B SIDE 1" BSP



#### BSH.7.16 WITH P AND T REAR, A AND B SIDE 3/4" BSP, X AND Y REAR



#### BSH.7.17 WITH P AND T REAR, A AND B SIDE 1" BSP, X AND Y REAR





| ADH.8                      |               |
|----------------------------|---------------|
| STANDARD SPOOLS FOR ADH.8  | Ch. I PAGE 59 |
| Tech. specifications ADH.8 | Ch. I PAGE 60 |
| SUBPLATES BSH.8            | Ch. I PAGE 61 |
| CETOP 3/NG06               | Ch. I PAGE 8  |
| STANDARD SPOOLS FOR AD.3.E | Ch. I PAGE 10 |
| AD.3.E                     | Ch. I PAGE 11 |
| "D15" DC Coils             | Ch. I PAGE 19 |
| "B14" AC SOLENOIDS         | Ch. I PAGE 19 |
| STANDARD CONNECTORS        | Ch. I PAGE 20 |

#### **ORDERING CODE**

ADH

Piloted valve

(Pilot valves and any modulating valves should be ordered separately)

8

CETOP 8/NG25



Mounting type (see next page)

\*\*

Spool type (see next page)

Piloting and draining I = X internal / Y internal

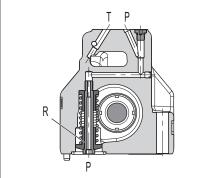
IE = X internal / Y external

EI = X external / Y internal

E = X external / Y external

(see Tab.1 at side)

R


Check valve incorporated at port P - setting 5 bar (Tab. 2 below) Only for I, IE versions (Omit if not required)

00 = No variant

LC = Main spool stroke limiter

2 Serial No.

#### Tab. 2 - Internal check on P



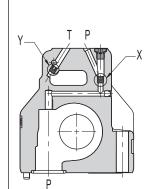
• For the spools 02-04-14-28 the piloting is normally external; the internal piloting is possible with the internal check valve (R).

#### ADH.8...4/3 AND 4/2 PILOTED VALVES CETOP 8/NG25

খ্যদ brevini

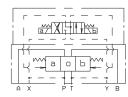
Type ADH.8 distributors are intended for interrupting, inserting and diverting a hydraulics system flow.

Normally these distributors are composed of a main stage, crossed by circuit main flow, and of a pilot stage available in several versions.

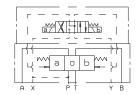

Various types of controls are available, used either individually or in combination for, among other functions, stroke limitation and main spool movement speed control, in order to optimize the hydraulic system operation where this type of valve is employed.

In those cases where normally to drain spools are used, it is necessary to remember that the minimum changeover pressure due to the opposing springs is equal to approximately 5 bar (see the operating features table next pages) and it is consequently necessary to specify when ordering the check valve incorporated in the P line, if required (as shown below).

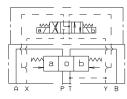
- Mounting surface in accordance with UNI ISO 4401 08 07 0 94 standard (ex CETOP R 35 H 4.2-4-08).
- Pilot operated spool, solenoid controller.
- Stroke control of main spool.
- Presetting for pressure reducing valve mounting.
- Presetting for single-acting throttle valve mounting.


Plugs type used: M6x6 both for pilot X and drain Y

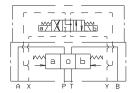
#### TAB.1 - PLUGS ARRANGEMENT FOR THE PILOT AND DRAIN LINES



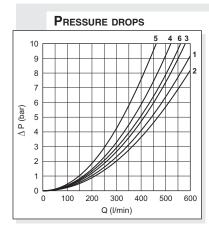

|                                               | PO DI VALVOLA                              | Montaggio tappi |     |  |
|-----------------------------------------------|--------------------------------------------|-----------------|-----|--|
| TIPO DI VALVOLA                               |                                            | X               | Υ   |  |
| ADH8I                                         | X internal piloting<br>Y internal draining | NO              | NO  |  |
| ADH8IE                                        | X internal piloting Y external draining    | NO              | YES |  |
| ADH8EI                                        | X external piloting Y internal draining    | YES             | NO  |  |
| ADH8E X external piloting Y external draining |                                            | YES             | YES |  |


#### ADH.8...I




#### ADH.8...IE




#### ADH.8...EI



ADH.8...E



03/2013/e



The diagram shows the pressure drops in relation to spools adopted for normal usage (see table).

The fluid used was a mineral based oil with a viscosity of 35 mm<sup>2</sup>/s at 50° C.

| Spool |                           | Connections |           |           |           |      |  |  |
|-------|---------------------------|-------------|-----------|-----------|-----------|------|--|--|
| type  |                           | P→A         | Р→В       | A→T       | В→Т       | P→T  |  |  |
| 01    | ENERGIZING                | 1           | 1         | 2         | 3         |      |  |  |
| 02    | DE-ENERGIZ.<br>ENERGIZING | 2           | 2         | 1         | 2         | 6(†) |  |  |
| 03    | DE-ENERGIZ.<br>ENERGIZING | 1           | 1         | 4(²)<br>1 | 4(³)<br>2 |      |  |  |
| 04    | DE-ENERGIZ.<br>ENERGIZING | 6           | 6         | 3         | 4         | 5    |  |  |
| 05    | DE-ENERGIZ.<br>ENERGIZING | 4(²)<br>2   | 4(³)<br>2 | 2         | 3         |      |  |  |
| 66    | DE-ENERGIZ.<br>ENERGIZING | 1           | 1         | 2         | 4<br>2    |      |  |  |
| 10    | ENERGIZING                | 1           | 1         | 2         | 3         |      |  |  |
| 14    | DE-ENERGIZ.<br>ENERGIZING | 6           | 6         | 3         | 4         | 5(3) |  |  |
| 28    | DE-ENERGIZ.<br>ENERGIZING | 6           | 6         | 4         | 3         | 5(²) |  |  |
| 23    | DE-ENERGIZ.<br>ENERGIZING | 1           | 4<br>2    | 2         | 3         |      |  |  |
|       |                           | Curve No.   |           |           |           |      |  |  |

Notes: (1) A/B stopped - (2) B stopped - (3) A stopped

#### SPOOLS AND MOUNTING TYPE

### (•) For the E mounting the locating spring works only with the steady system

|                  | C mounting             | A mounting             | B mounting                            | E mounting             | P mounting                 |
|------------------|------------------------|------------------------|---------------------------------------|------------------------|----------------------------|
| Pilot<br>Piloted | AD.3.E.03.C<br>ADH.8.C | AD.3.E.03.E<br>ADH.8.A | AD.3.E.03.F<br>ADH.8.B                | AD.3.E.16.E<br>ADH.8.E | AD3E16E/AD3E16F<br>ADH.8.P |
| Scheme Spool     | A X PT Y B             |                        | A X PT Y B                            | a x PT Y B             | A X P Y B                  |
| 01               |                        |                        |                                       |                        | T.T.                       |
| 02               |                        | XHH                    |                                       | XHI                    | XIHI                       |
| 03               |                        |                        |                                       |                        | XHI                        |
| 04(*)(**)        |                        |                        |                                       |                        |                            |
| 05               |                        |                        |                                       |                        |                            |
| 66               |                        |                        | T T T T T T T T T T T T T T T T T T T |                        |                            |
| 10*              |                        |                        |                                       |                        | X                          |
| 14*              |                        |                        |                                       |                        |                            |
| 28*              |                        |                        |                                       |                        |                            |
| 23*              |                        |                        | [ <del></del>                         |                        |                            |

<sup>(\*</sup> Spools with price increasing)

<sup>(\*\*</sup> The spool 04 is available for operating pressures in the P/A/B lines, max. 320 bar)

#### PILOT SOLENOID CONTROL VALVE SPECIFICATIONS

FOR DIFFERENT CONTROLS, PLEASE CONTACT OUR TECHNICAL ARON SERVICE

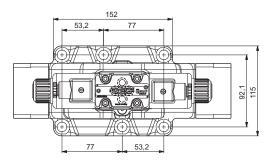
| T IZOT COZZITOID CONTINUZ TAZYZ OF                     |                  |                        |
|--------------------------------------------------------|------------------|------------------------|
| Max. operating pressure ports P/A/B                    | D/A/D !:         | 420 bar                |
| The spool 04 is available for operating pressures in t | he P/A/B lines m | ax. 320 bar            |
| Max. operating pressure port T (int. drainage)         |                  | 160 bar                |
| Max. operating pressure port T (ext. drainage)         |                  | 250 bar                |
| Max. piloting pressure                                 |                  | 350 bar                |
| Max. piloting pressure with main spool stroke limite   | er (LC variant)  | 250 bar                |
| Min. piloting pressure*                                |                  | 5 bar                  |
| Max. flow with 04-14-28 spools                         | 500 l/mi         | n a 210 bar            |
| ·                                                      | 450 l/mi         | n a 320 bar            |
| Max. flow with all other spools                        | 600 l/mi         | n a 210 bar            |
| ·                                                      | 500 l/mi         | n a 320 bar            |
| Piloting oil volume for engagement 3 position v        | alves            | 11.1 cm <sup>3</sup>   |
| Piloting oil volume for engagement 2 position v        | alves            | 22.12 cm <sup>3</sup>  |
| Hydraulic fluid                                        | mineral oil      | DIN 51524              |
| Fluid viscosity                                        | 2.8 ÷            | 380 mm <sup>2</sup> /s |
| Fluid temperature                                      | -2               | 0°C ÷ 70°C             |
| Ambient temperature                                    | -2               | 0°C ÷ 50°C             |
| Max. contamination level                               | class 10 in acco | rdance with            |
|                                                        | NAS 1638 with    | filter ß ≥75           |
| Weight ADH8 without pilot valve                        |                  | 13,1 Kg                |
| Weight ADH8 with pilot valve with 1 AC soleno          | id               | 14,3 Kg                |
| Weight ADH8 with pilot valve with 1 DC soleno          |                  | 14,5 Kg                |
| Weight ADH8 with pilot valve with 2 AC soleno          |                  | 14,6 Kg                |
| Weight ADH8 with pilot valve with 2 DC soleno          |                  | 15,1 Kg                |
| 1                                                      |                  | , 9                    |

 $<sup>^{\</sup>star}$  For valves with internal drain (Y), tank pressure on T must be added to min. piloting pressure.

Min. piloting pressure is 5 bar with low flow rate, but it is up to 12 bar with higher flow rate.

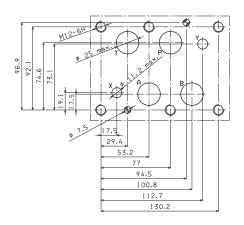
For version "R" with check valve on P, the cracking pressure of 5 bar is obtained with flow rate > 25 l/min.

#### Switching time

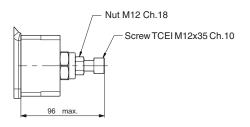

Such values refer to a solenoid valve with P = 100 bar pressure using a mineral oil at  $50^{\circ}$ C with  $36 \text{ mm}^2$ /sec viscosity PA and BT connections.

#### SWITCHING TIMES PILOTED VALVE

|           | ENERGIZING ±10% (ms) |          | DE-ENERGIZING ±10% (ms) |          |
|-----------|----------------------|----------|-------------------------|----------|
| Solenoids | 2 posit.             | 3 posit. | 2 posit.                | 3 posit. |
| AC        | 60                   | 45       | 90                      | 60       |
| DC        | 75                   | 55       | 90                      | 60       |

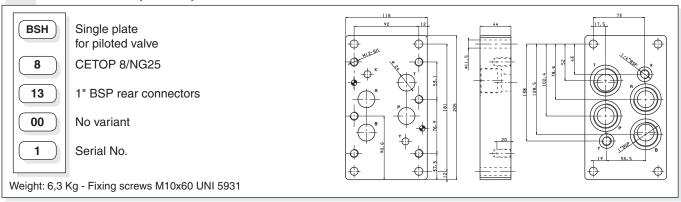

#### **OVERALL DIMENSIONS**

# 

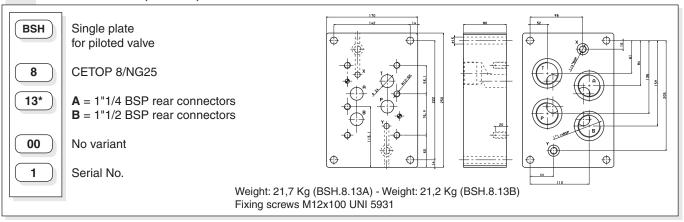



- 1 Piloted solenoid valve type AD3E (CETOP3 NG6)
- 2 Flow regulation valve type AM3QF..C
- 3 Pressure reduction valve type AM3RD..C
- 4 Main valve type ADH8\*
  - $^{\star}$  The piloted valve is provided with a calibrated screw M6 with hole Ø1.5, already mounted on the port "P".

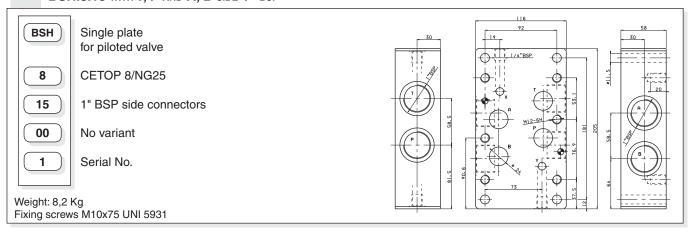
#### **CETOP 8 MOUNTING SURFACE**



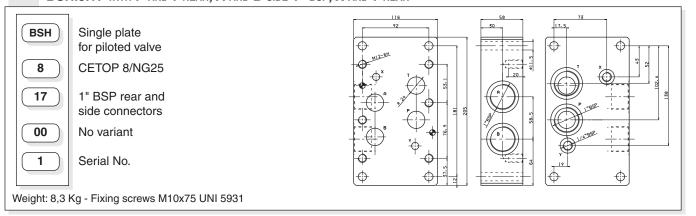

- Piloted valve fixing: n° 6 screws T.C.E.I. M12x60
- Tightening torque: 115 Nm with screw Cl. 12.9\*\* 69 Nm with screw Cl. 8.8
- \*\* Recommended for applications over 350 bar
- Seals: n°4 OR 2-123/3118 type (29.82x2.62) 90 Shore n°2 OR 2-117/3081 type (20.24x2.62) - 90 Shore




SPOOL STROKE ADJUSTMENT (LC variant)


#### BSH.8.13 WITH P, T AND A, B REAR 1" BSP




#### BSH.8.13\* WITH P, T AND A, B REAR 1"1/4 BSP OR 1" 1/2 BSP



#### BSH.8.15 WITH T, P AND A, B SIDE 1" BSP



#### BSH.8.17 WITH P AND T REAR, A AND B SIDE 1" BSP, X AND Y REAR





#### CDL.04.6...

| "A09" DC Coils      | Ch. I Page 69 |
|---------------------|---------------|
| CONNECTORS STANDARD | Ch. I Page 20 |

#### **ORDERING CODE**

CDL Stackable circuit selector valve

**04** Size NG04

W

No. of way (single element)

Threaded connectors 1/4" BSP

I Internal drainage

No. of elements: 1/2/3/4

Voltage (Tab. 1)

Variants (Tab. 2)

Q (I/min)

1 Serial No.

# CDL.04.6... STACKABLE CIRCUIT SELECTOR VALVES

The stackable circuit selector valves, type CDL.04.6, allows one single drive of 5 users with 4 elements connected in series.

As they are moved from high performances solenoids they don't need the external drainage.

Additionally, beyond having a reduced and compact dimensions, they can manage high hydraulic powers with a minimal pressure drop. The body valve is white zinc plated.

Max. pressure 250 bar Max. flow 20 l/min Overlap positive Mineral oils DIN 51524 Hydraulic fluids Fluid viscosity  $10 \div 500 \text{ mm}^2/\text{s}$ Fluid temperature -25°C ÷ 75°C -25°C ÷ 60°C Ambient temperature Max. contamination level class 10 in accordance NAS with 1638 with filter B<sub>25</sub>≥75 Weight see "Overall dimension"

#### Tab.1 - A09 (27 W) Coll

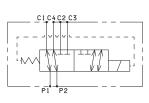
| DC VOLTAGE **                                                                |                |               |                |
|------------------------------------------------------------------------------|----------------|---------------|----------------|
| L                                                                            | 12V            |               |                |
| 4                                                                            | 14V            |               | 115Vac/50Hz    |
| M                                                                            | 24V            |               | 120Vac/60Hz    |
| N                                                                            | 48V*           | ,             | with rectifier |
| Р                                                                            | 110V*          |               | 230Vac/50Hz    |
| Z                                                                            | 102V* <b>←</b> | $\rightarrow$ | 240Vac/60Hz    |
| Х                                                                            | 205V* <b>←</b> |               | with rectifier |
| W                                                                            | Without D      | Ссо           | il             |
| Voltage codes are not stamped on the plate, their are readable on the coils. |                |               |                |

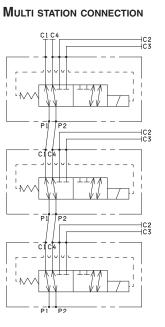
- \* Special voltage
- \*\* Technical data see page I 68
- The AMP Junior coil, the Deutsch coil with bidirectional diode and the coil with flying leads (with or without diode) coils are available in 12V or 24V DC voltage only.

#### TAB. 2 - VARIANTS

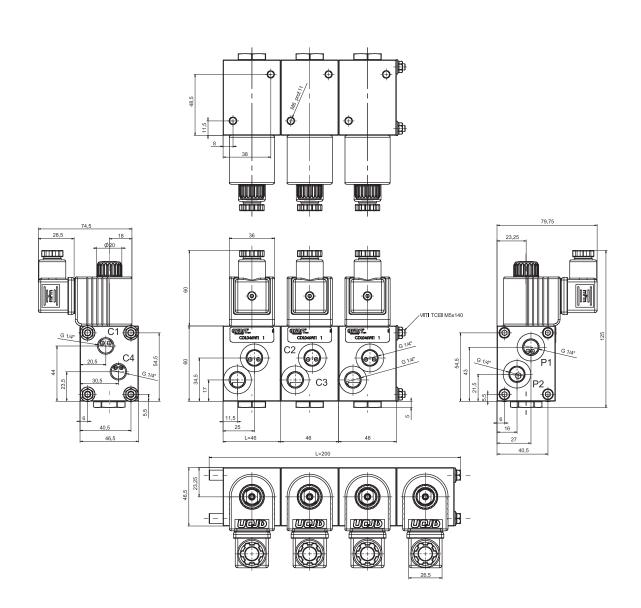
| VARIANT                                     | CODE      |
|---------------------------------------------|-----------|
| No variant (without connectors)             | S1(*)     |
| Viton                                       | SV(*)     |
| Rotary emergency button                     | P2(*)(**) |
| Emergency button                            | ES(*)     |
| AMP Junior connection                       | AJ(*)     |
| Bobina con fili (250 mm)                    | FL        |
| with flying leads (130 mm) and integr. diod | e LD      |
| Deutsch connection with bidir. diode        | CX        |
| Other variants available on request.        |           |

(\*) Coils with Hirschmann and AMP Junior connection supplied without connectors. The connectors can be ordered separately, ch. I page 20.


(\*\*) P2 Emergency tightening torque  $max. 6\div9 \ Nm / 0.6 \div 0.9 \ Kgm$  with CH n. 22


#### 

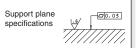
#### 


The tests have been carried out with solenoids at operating temperature and a voltage 10% less than rated voltage with a fluid temperature of 50 C°. The fluid used was a mineral oil with a viscosity of 46 mm²/s at 40 degrees C.

## Hydraulic symbols Single element






#### OVERALL DIMENSIONS



Fixing screws with material specifications min. 8.8 Tighten the screws to a torque of 5 Nm (0.5 Kgm)

| No. of elements | No. of way | L<br>(Length) | Weight<br>(Kg) | Fixing screws                 | Kit spare part code*<br>(rods and studs) |
|-----------------|------------|---------------|----------------|-------------------------------|------------------------------------------|
| 1               | 06         | 46            | 1.05           | _                             | _                                        |
| 2               | 08         | 100           | 2.20           | TCEI M5x95                    | V89.54.0020                              |
| 3               | 10         | 145           | 3.30           | TCEI M5x140                   | V89.54.0021                              |
| 4               | 12         | 200           | 4.45           | TCEI M5x194<br>(special rods) | V89.54.0022                              |

(\*) For multiple composition rods and studs are available.



| CDI | 06 | 6.6 |
|-----|----|-----|
|     |    |     |

| "40W" DC Coils      | Ch. I Page 70 |
|---------------------|---------------|
| CONNECTORS STANDARD | Ch. I Page 20 |

#### **ORDERING CODE**

CDL

Stackable circuit selector valve

06

Size NG06

6

No. of way (single element)

W

Threaded connectors 3/8" BSP

Internal drainage

\*

No. of elements: 1/2/3/4/5

\*

Voltage (Tab. 1)

\*\*

Variants (Tab. 2)

1

Serial No.

# CDL.06.6... STACKABLE CIRCUIT SELECTOR VALVES

The stackable circuit selector valves, type CDL.06.6, allows one single drive of 6 users with 5 elements connected in series.

As they are moved from high performances solenoids they don't need the external drainage.

This valves can manage high hydraulic powers with a minimal pressure drop.

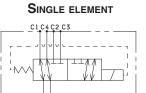
Max. pressure 250 bar 50 l/min Max. flow Overlap negative Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity  $10 \div 500 \text{ mm}^2/\text{s}$ Fluid temperature -25°C ÷ 75°C -25°C ÷ 60°C Ambient temperature Max. contamination level class 10 in accordance NAS with 1638 with filter  $\beta_{25} \ge 75$ see "Overall dimension"

#### TAB.1 - 40W COIL

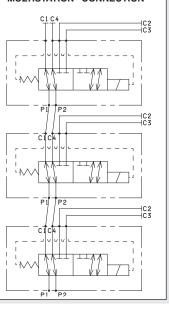
#### **DC** VOLTAGE

L 12VM 24V

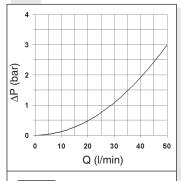
W Without DC coil


Voltage codes are not stamped on the plate, their are readable on the coils.

#### Tab.2 - Variants


| No variant (without connectors)   | S1(*) |
|-----------------------------------|-------|
| Viton                             | SV(*) |
| Emergency button                  | ES(*) |
| Rotary emergency button           | P2(*) |
| Raccordements Deutsch DT04-       | 2P CZ |
| Other variants available on reque | est.  |

(\*) Coils with Hirschmann connection supplied without connectors. The connectors can be ordered separately, ch. I page 20.

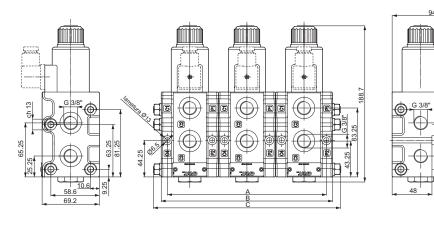

#### HYDRAULIC SYMBOLS



#### MULTISTATION CONNECTION



#### PRESSURE DROPS




 $\begin{array}{c} P1 \rightarrow C1,\, P1 \rightarrow C2,\\ P2 \rightarrow C3 \text{ et } P2 \rightarrow C4 \end{array}$ 

The fluid used is a mineral oil with a viscosity of 46 mm²/s at 40°C; the tests have been carried out at a fluid temperature of 40°C.

Fixing screws UNI 5931 M6x60 with material specifications min. 8.8 Tightening torque for studs 8 Nm / 0.8 Kgm Tightening torque for rods 20 Nm / 2 Kgm

#### **OVERALL DIMENSIONS**



| No. of   | No. of | Α   | В           | С   | Weight | Kit spare part code* |
|----------|--------|-----|-------------|-----|--------|----------------------|
| elements | way    |     | Length (mm) |     | (Kg)   | (rods and studs)     |
| 1        | 06     | 54  | 69          | -   | 3      | /                    |
| 2        | 08     | 123 | 138         | 160 | 6,3    | V89.56.0001          |
| 3        | 10     | 192 | 207         | 226 | 9,3    | V89.56.0002          |
| 4        | 12     | 261 | 276         | 296 | 12,3   | V89.56.0003          |
| 5        | 14     | 330 | 345         | 365 | 15,3   | V89.56.0004          |

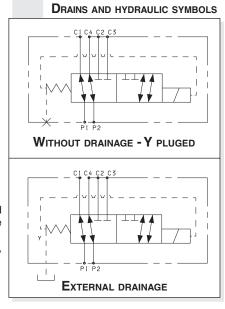
(\*) For multiple composition rods and studs are available.

| ADL06.6             |               |
|---------------------|---------------|
| "D15" DC Coils      | Ch. I PAGE 69 |
| STANDARD CONNECTORS | Ch. I PAGE 20 |

#### **ADL06.6...** FLOW DIVERSION VALVES

The 6 way flow diversion valves are special solenoid valves which allow the simultaneous connection of two

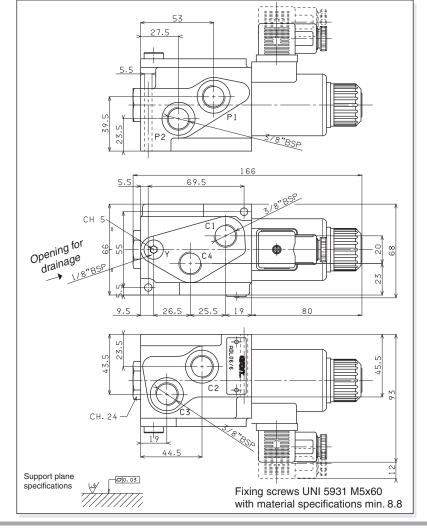
In order to obtain valve's working at pressure of 250 bar up to 320 bar (exeternal drainge) the G 1/8" BSP plug must be removed to Y connector.

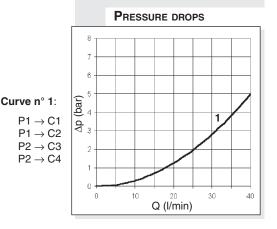

| Max. pressure (without drainage, Y p | luged) 250 bar                  |
|--------------------------------------|---------------------------------|
| Max. pressure (external drainage)    | 320 bar                         |
| Max. flow                            | 40 l/min                        |
| Overlap                              | negative                        |
| Fluid viscosity                      | 10 ÷ 500 mm <sup>2</sup> /s     |
| Fluid temperature                    | -25°C ÷ 75°C                    |
| Ambient temperature                  | -25°C ÷ 60°C                    |
| Max. contamination level class       | 10 in accordance                |
| with NAS 1638                        | with filter B <sub>25</sub> ≥75 |
| Weight                               | 2,4 Kg                          |
|                                      |                                 |

#### **ORDERING CODE**

ADL06 Flow diversion valves NG6 6 No. of way W Threaded connectors 3/8"BSP I Without drainage Y connector pluged Voltage (see table 1) \*\* Variants (see table 2) 3 Serial No.

#### TAB.2 - VOLTAGE D15 Coil (30W) \*\* 12V 24V M 115Vac/50Hz ٧ 28V\* 120Vac/60Hz Ν 48V\* with rectifier Z 102V\***∢** 230Vac/50Hz 110V\* Ρ 240Vac/60Hz Χ 205V\***∢** with rectifier W Without DC coils and connectors Voltage codes are not stamped on the plate, their are readable on the coils. \* Special voltage


- \*\* Technical data see page XII 4
- · AMP Junior (with or without diode) and Deutsch and with flying leads coils, are available in 12V or 24V DC voltage only. • Plastic type coils are available in 12V, 24V,
- 28V or 110V DC voltage only.




#### TAB.2 - VARIANTS

| No variant (without connectors)      | S1(*) |
|--------------------------------------|-------|
| Viton                                | SV(*) |
| Emergency button                     | ES(*) |
| Rotary emergency button              | P2(*) |
| AMP Junior coil                      | AJ(*) |
| AMP Junior coil and integrated diode | AD(*) |
| Coil with flyning leads (175mm)      | SL    |
| Deutsch DT04-2P Coil type            | CZ    |
| Plastic type coil D15                | RS(*) |
| Other variants available on request. |       |

(\*) Coils with Hirschmann and AMP Junior connection supplied without connectors. The connectors can be ordered separately, ch. I page 20.



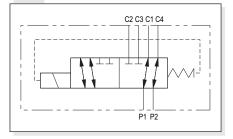




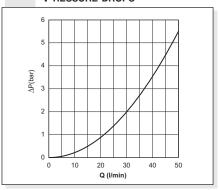
| B |  |  |  |  |
|---|--|--|--|--|
|   |  |  |  |  |
|   |  |  |  |  |

| "40W" DC Coils      | Ch. I PAGE 70 |
|---------------------|---------------|
| STANDARD CONNECTORS | Ch. I page 20 |

# The 6 way flow diversion valves, type BDL.06.6, are special solenoid valves which allow the simultaneous connection of two systems. With all user ports on the same side, these valves allow to simplify the layout of hydraulic plant. As they are moved from high performances solenoids they don't need the external drainage.


This valves can manage high hydraulic powers with a low pressure drop.

Max. pressure Max. flow 250 bar 50 l/min Overlap negative Hydraulic fluids Mineral oils DIN 51524 10 ÷ 500 mm<sup>2</sup>/s Fluid viscosity Fluid temperature -25°C ÷ 75°C -25°C ÷ 60°C Ambient temperature Max. contamination level class 10 in accordance with NAS 1638 with filter β<sub>25</sub>≥75 Weight


#### **ORDERING CODE**

| BDL          | Flow diversion valves       |
|--------------|-----------------------------|
| 06           | Size NG06                   |
| 6            | No. of way                  |
| $lackbox{W}$ | Threaded connectors 3/8"BSP |
|              | Internal drainage           |
| *            | Voltage (Tab. 1)            |
| **           | Variants (Tab. 2)           |
| 1            | Serial No.                  |

#### HYDRAULIC SYMBOL



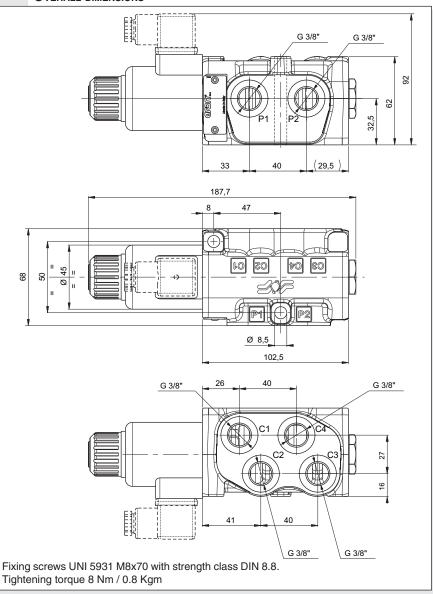
#### PRESSURE DROPS



 $P1 \rightarrow C1$  ,  $P1 \rightarrow C2$   $P2 \rightarrow C4$  ,  $P2 \rightarrow C3$ 

The fluid used is a mineral oil with a viscosity of 46 mm²/s at 40°C; the tests have been carried out at a fluid temperature of 40°C.

#### Tab.1 - 40W Coll


|                                                                              | TAB. I - TOW COIL |  |
|------------------------------------------------------------------------------|-------------------|--|
| DC VOLTAGE                                                                   |                   |  |
| L                                                                            | 12V               |  |
| M                                                                            | 24V               |  |
| N                                                                            | 48V*              |  |
| W                                                                            | Without DC coils  |  |
| Voltage codes are not stamped on the plate, their are readable on the coils. |                   |  |
| * Special voltage                                                            |                   |  |

#### Tab.2 - Variants

| TABLE VALUATIO                       |       |
|--------------------------------------|-------|
| No variant (without connectors)      | S1(*) |
| Viton                                | SV(*) |
| Emergency button                     | ES(*) |
| Rotary emergency button              | P2(*) |
| Deutsch DT04-2P Coil type            | CZ    |
| Other variants available on request. |       |

(\*) Coils with Hirschmann connection supplied without connectors. The connectors can be ordered separately, ch. I page 20.

#### OVERALL DIMENSIONS





# CDL.10.6... STACKABLE CIRCUIT SELECTOR VALVES

এদ brevini

The stackable circuit selector valves, type CDL.10.6, allows one single drive of 6 users with 5 elements connected in series.

As they are moved from high performances solenoids they don't need the external drainage.

This valves can manage high hydraulic powers with a minimal pressure drop.

Max. pressure 250 bar 80 l/min Max. flow Overlap negative Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity  $10 \div 500 \text{ mm}^2/\text{s}$ Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C Max. contamination level class 10 in accordance

#### CDL.10.6...

| "A16" DC Coils      | Ch. I Page 70 |
|---------------------|---------------|
| CONNECTORS STANDARD | Ch. I Page 20 |
|                     |               |

#### ORDERING CODE

CDL Stackable circuit selector valve

Size NG10

10

W

1

No. of way (single element)

Threaded connectors 1/2" BSP

Internal drainage

No. of elements: 1/2/3/4/5

\* ) Voltage (Tab. 1)

Variants (Tab. 2)

Serial No.

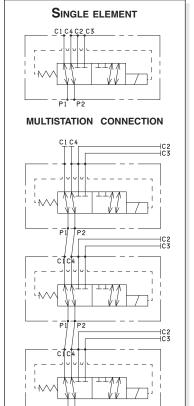
#### TAB.1 - A16 COIL

|                                                                              | DC VOLTAGE **           |                                              |
|------------------------------------------------------------------------------|-------------------------|----------------------------------------------|
| M<br>N                                                                       | 12V<br>24V<br>48V*      | 115Vac/50Hz<br>120Vac/60Hz<br>with rectifier |
| P<br>Z<br>X                                                                  | 110V*<br>102V*<br>205V* | 230Vac/50Hz<br>240Vac/60Hz<br>with rectifier |
| W Without DC coil                                                            |                         |                                              |
| Voltage codes are not stamped on the plate, their are readable on the coils. |                         |                                              |

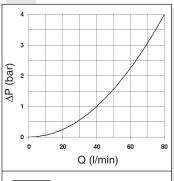
- \* Special voltage
- \*\* Technical data see page I 69

#### TAB.2 - VARIANTS

| No variant (without connectors) | S1(*) |
|---------------------------------|-------|
| Viton                           | SV(*) |
| Emergency button                | ES(*) |
| Rotary emergency button         | P2(*) |
|                                 |       |


Other variants available on request.

(\*) Coils with Hirschmann connection supplied without connectors. The connectors can be ordered separately, ch. I page 20.

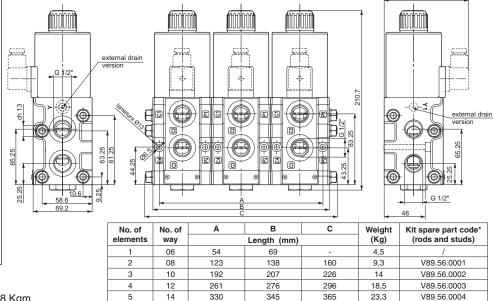

#### HYDRAULIC SYMBOLS

NAS with 1638 with filter  $\beta_{25}^{375}$ 

see "Overall dimension"



#### PRESSURE DROPS




 $\begin{array}{c} \hline & \text{P1} \rightarrow \text{C1, P1} \rightarrow \text{C2,} \\ & \text{P2} \rightarrow \text{C3 et P2} \rightarrow \text{C4} \\ \hline \\ \hline \text{The fluid used is a mineral oil with} \\ \hline \end{array}$ 

The fluid used is a mineral oil with a viscosity of 46 mm²/s at 40°C; the tests have been carried out at a fluid temperature of 40°C.

Fixing screws UNI 5931 M6x60 with material specifications min. 8.8 Tightening torque for studs 8 Nm / 0.8 Kgm Tightening torque for rods 20 Nm / 2 Kgm

#### **O**VERALL DIMENSIONS



(\*) For multiple composition rods and studs are available.



| ADL10.6             |               |  |
|---------------------|---------------|--|
| "A16" DC Coils      | Ch. I PAGE 70 |  |
| STANDARD CONNECTORS | Ch. I PAGE 20 |  |
|                     |               |  |

#### **ADL10.6...** FLOW DIVERSION VALVES

The 6 way flow diversion valves are special solenoid valves which allow the simultaneous connection of two

In order to obtain valve's working at pressure of 250 bar up to 320 bar (external drainage) the G 1/8" BSP plug must be removed to Y connector.

Max. pressure (without drainage, Y plugged) 250 bar Max. pressure (external drainage) 320 bar 80 l/min Max. flow Fluid viscosity 10 ÷ 500 mm<sup>2</sup>/s Fluid temperature -25°C ÷ 75°C -25°C ÷ 60°C Ambient temperature Max. contamination level class 10 in accordance with NAS 1638 with filter  $\beta_{25} \ge 75$ Weight 3,6 Kg

#### **O**RDERING CODE

ADL10 6

J

I \*

\*\*

1

Flow diversion valves NG10

No. of way

Connectors 3/4"BSP

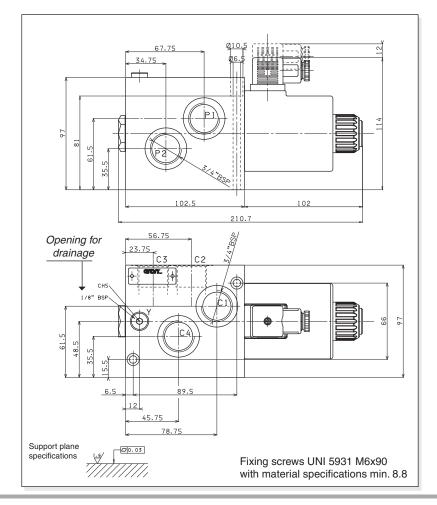
Without drainage Y connector plugged

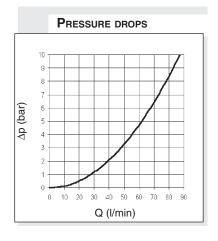
Voltage (see table 1)

Variants (see table 2)

Serial No.

#### TAB.1 - A16 COIL DC VOLTAGE \*\* 12V 115Vac/50Hz M 24V 120Vac/60Hz N 48V\* with rectifier Р 110V\* 230Vac/50Hz Z 240Vac/60Hz X 205V\***∢** with rectifier Without DC coil Voltage codes are not stamped on the plate, their are readable on the coils.


- \* Special voltage
- \*\* Technical data see page I 69


# DRAINS AND HYDRAULIC SYMBOLS WITHOUT DRAINAGE - Y PLUGGED EXTERNAL DRAINAGE

#### Tab.2 - Variants

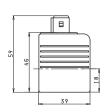
| VARIANT                              | CODE  |
|--------------------------------------|-------|
| No variant (without connectors)      | S1(*) |
| Viton                                | SV(*) |
| Emergency button                     | ES(*) |
| Rotary emergency button              | P2(*) |
| Other variants available on request. |       |

(\*) Coils with Hirschmann and AMP Junior connection supplied without connectors. The connectors can be ordered separately, ch. I page 20.








#### "A09" DC COILS FOR CDL.04...

#### খ্যদ brevini

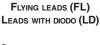
| Type of protection              |              |
|---------------------------------|--------------|
| (in relation to connector used) | IP 65        |
| Number of cycle                 | 18.000/h     |
| Supply tolerance                | ±10%         |
| Ambient temperature             | -30°C ÷ 50°C |
| Duty cycle                      | 100% ED      |
| Insulation class wire           | Н            |
| Weight                          | 0,215 Kg     |
|                                 |              |

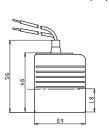
• The AMP Junior coil, the Deutsch coil with bidirectional diode and the coil with flying leads (with or without diode) coils are available in 12V or 24V DC voltage only.

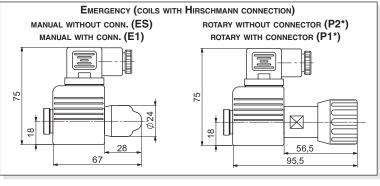
| AMP JUNIOR ( | AJ) | ) |
|--------------|-----|---|
|--------------|-----|---|



| VOLTAGE     | Max winding temperature    | RATED     | RESISTANCE AT 20°C |
|-------------|----------------------------|-----------|--------------------|
| (V)         | (AMBIENT TEMPERATURE 25°C) | POWER (W) | (Онм) ±7%          |
| 12V         | 123°C                      | 27        | 5.3                |
| 24V         | 123°C                      | 27        | 21.3               |
| 48V*        | 123°C                      | 27        | 85.3               |
| 102V(*)(**) | 123°C                      | 27        | 392                |
| 110V(*)(**) |                            | 27        | 448                |
| 205V(*)(**) | 123°C                      | 27        | 1577               |
| * Special   | voltages                   |           |                    |


Type of protection


(in relation to the connector used)

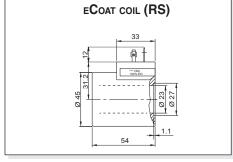

The european low voltage directive is applied to electronical equipments used at a nominal voltages between 50 and 1000 VAC or 75 and 1500 VDC. In conformity with the low directive each part of the manifold or the subplate on which the valve is mounted should be connected to a protective earth with a resistence less than 0.1 ohms.

**D**EUTSCH COIL WITH BIDIR. DIODE (CX)
DT04 - 2P










IP 66

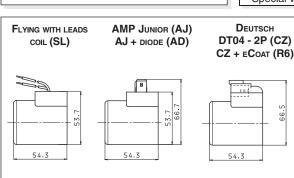
(\*) Emergency tightening torque max. 6÷9 Nm / 0.6 ÷ 0.9 Kgm with CH n. 22

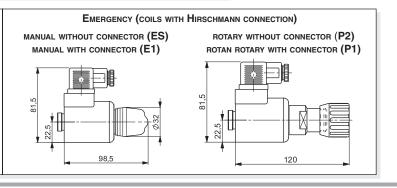
#### • Emergency, plastic coil, and Amp Junior, leads

# or deutch coils, are not available for A66 valve.



|   | VOLTAGE               | MAX WINDING TEMPERATURE | RATED   | RESISTANO<br>AT 20°C |
|---|-----------------------|-------------------------|---------|----------------------|
|   |                       |                         |         |                      |
|   | Weight                |                         | (       | ),354 Kg             |
| ч | Insulation class wire |                         | H       |                      |
| П | Duty cycle            |                         | 100% ED |                      |
| П | Ambient temperature   |                         | -54°(   | C ÷ 60°C             |
|   | Supply tolerance      |                         |         | ±10%                 |
|   | Number of cycles      |                         |         | 18.000/h             |


"D15" DC coils for ADL06... AND A.66...


| VOLTAGE<br>(V) | Max winding temperature (Ambient temperature 25°C) | POWER<br>(W) | RESISTANCE<br>AT 20°C<br>(OHM) ±10% |
|----------------|----------------------------------------------------|--------------|-------------------------------------|
| 12V            | 110°C                                              | 30           | 4.8                                 |
| 24V            | 110°C                                              | 30           | 18.8                                |
| 28V*           | 110°C                                              | 30           | 25.6                                |
| 48V*           | 110°C                                              | 30           | 75.2                                |
| 102V(*)(**)    |                                                    | 30           | 340                                 |
| 110V(*)(**)    | 110°C                                              | 30           | 387                                 |
| 205V(*)(**)    | 110°C                                              | 30           | 1375                                |
| * Special      | voltages                                           |              |                                     |

• AMP Junior coils (with or without diode) and coils with flying leads and coils type Deutsch, are available in 12V or 24V DC voltage only.

থান brevini

- The pastic type coil (BR variant) is available in 12V, 24V, 28V or 110V DC voltage only.
  - The european low voltage directive is applied to electronical equipments used at a nominal voltages between 50 and 1000 VAC or 75 and 1500 VDC. In conformity with the low directive each part of the manifold or the subplate on which the valve is mounted should be connected to a protective earth with a resistence less than 0.1 ohms.





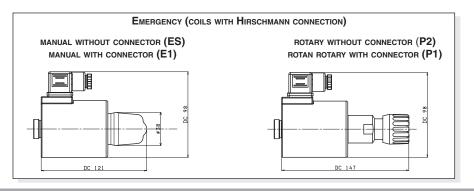



#### "40W" DC coils for CDL06...

| Type of protection                  |              |
|-------------------------------------|--------------|
| (in relation to the connector used) | IP 66        |
| Number of cycles                    | 18.000/h     |
| Supply tolerance                    | +10% / -10%  |
| Ambient temperature                 | -54°C ÷ 60°C |
| Duty cycle                          | 100% ED      |
| Insulation class wire               | Н            |
| Weight                              | 0,354 Kg     |

| Voltage<br>(V) | Max. winding temperature (Ambient temperature 25°C) | RATED POWER (W) | RESISTANCE AT 20°C (OHM) ±10% |
|----------------|-----------------------------------------------------|-----------------|-------------------------------|
| 12V            | 135°C                                               | 40              | 3.6                           |
| 24V            | 135°C                                               | 40              | 14.4                          |
|                |                                                     |                 | IT40W - 02/2004/e             |






#### "A16" DC coils for ADL10 and CDL10

 $\begin{array}{cccc} \text{Type of protection (in relation to the connector used)} & \text{IP 65} \\ \text{Number of cycles} & 18.000/h \\ \text{Supply tolerance} & \pm 10\% \\ \text{Ambient temperature} & -30^{\circ}\text{C} \div 60^{\circ}\text{C} \\ \text{Duty cycle} & 100\% \text{ ED} \\ \text{Insulation class wire} & H \\ \text{Weight} & 0,9 \text{ Kg} \\ \end{array}$ 

| VOLTAGE                 | MAX WINDING TEMPERATURE    | RATED POWER | RESISTANCE AT 20°C |
|-------------------------|----------------------------|-------------|--------------------|
| (V)                     | (Ambient temperature 25°C) | (W)         | (Онм) ±7%          |
| 12V                     | 106°C                      | 45          | 3.2                |
| 24V                     | 113°C                      | 45          | 12.4               |
| 48V*                    | -                          | 45          | -                  |
| 102V(*)(**)             | -                          | 45          | -                  |
| 110V <sup>(*)(**)</sup> | 118°C                      | 45          | 268                |
| 205V <sup>(*)(**)</sup> | -                          | 45          | -                  |

\*\* The european low voltage directive is applied to electronical equipments used at a nominal voltages between 50 and 1000 VAC or 75 and 1500 VDC. In conformity with the low directive each part of the manifold or the subplate on which the valve is mounted should be connected to a protective earth with a resistence less than 0.1 ohms.



#### **A**BBREVIATIONS AP HIGH PRESSURE CONNECTION AS Phase Lag (DEGREES) BP LOW PRESSURE CONNECTION STROKE (MM) С CH ACROSS FLATS Сн INTERNAL ACROSS FLATS DA AMPLITUDE DECAY (DB) DΡ DIFFERENTIAL PRESSURE (BAR) F FORCE (N) INPUT CURRENT (A) **l**% M MANOMETER CONNECTION NG KNOB TURNS OR SEAL RING LOAD PRESSURE (BAR) **PARBAK** PARBAK RING PL Parallel connection $\mathbf{P}_{\mathsf{R}}$ REDUCED PRESSURE (BAR) Q FLOW (L/MIN) $\mathbf{Q}_{\mathsf{P}}$ PUMP FLOW (L/MIN) SE ELASTIC PIN SF Ball SR SERIES CONNECTION X **PILOTING** DRAINAGE Υ

## SUBPLATE MOUNTING PRESSURE CONTROL VALVES



| PV*.3 / PV*.U.3 |               |
|-----------------|---------------|
|                 | Ch. II PAGE 2 |
| PV*.5 / PV*.U.5 |               |
|                 | Ch. II page 4 |

# SUBPLATE MOUNTING PRESSURE CONTROL VALVES



| V.*.P    |                |
|----------|----------------|
|          | Ch. II PAGE 6  |
| V.*.L    |                |
|          | CH. II PAGE 6  |
| BS.VMP P |                |
|          | Ch. II PAGE 11 |



PVR.3 / PVS.3...

#### PV\*.3 / PV\*.U.3 PRESSURE REDUCING AND SEQUENCING VALVES CETOP 3/NG6

খ্যদ brevini

These subplate mounting piloted type pressure reducing and sequencing valves ensure a minimum variation in their calibrated pressure value with changing flow rate.

They are normally supplied with internal piloting and internal drainage on B, but they are already provided with a hole on the front cover to allow for external drainage.

They are available with two different types of adjustment and three calibrated ranges that cover pressure 7 ÷ 250 bar, with and without check valve.

The adjustment is carried out by means of a grub screw or a metric plastic knob.

320 bar Max. pressure Setting ranges Spring 1 max. 60 bar

Spring 2 max. 120 bar Spring 3 max. 250 bar

Maximum allowed  $\Delta p$  pressure between

the inlet and outlet pressure (PVR only) 150 bar Max. flow 40 l/min Draining on port T  $0.5 \div 0.7 \text{ l/min}$ 

Mineral oils DIN 51524 Hydraulic fluids Fluid viscosity 10 ÷ 500 mm<sup>2</sup>/s Fluid temperature -25°C ÷ 75°C

Ambient temperature -25°C ÷ 60°C Max. contamination lever class 10 in accordance

with NAS 1638 with filter B<sub>25</sub>≥75 Weight (without check valve)

1,5 Kg Weight (with check valve) 2 Kg

#### **O**RDERING CODE

PV\*

R = Reducing valve

S = Sequencing valve

U

Check valve (omit if not required)

3

CETOP 3/NG6

\*

Type of adjustment:

M = Plastic knob

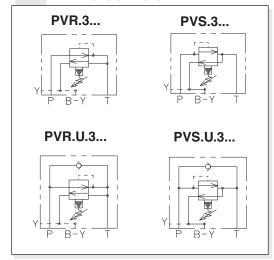
C = Grub screw

\*

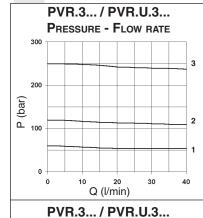
Setting ranges

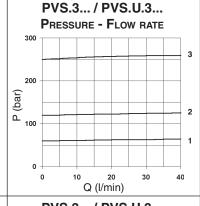
1 = max. 60 bar (white spring)

2 = max. 120 bar (yellow spring)

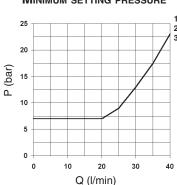

3 = max. 250 bar (green spring)

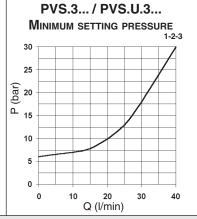
1


00 = No variant V1 = Viton


Serial No.

#### HYDRAULIC SYMBOLS





#### **DIAGRAMS**

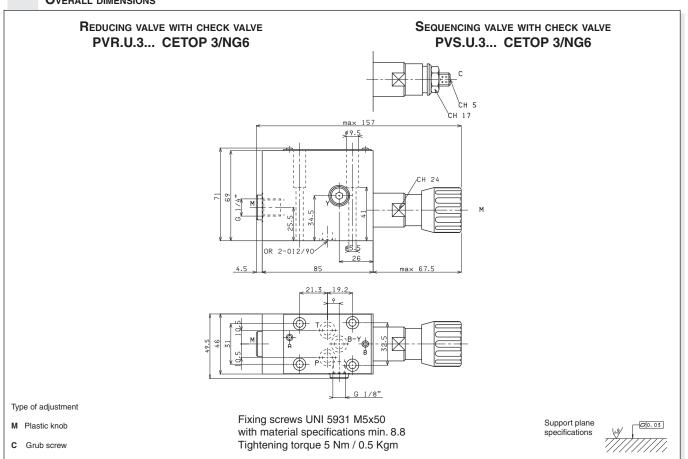




### MINIMUM SETTING PRESSURE 25






The fluid used is a mineral oil with viscosity of 46 mm<sup>2</sup>/s at 40°C. The tests were carried out at a fluid temperature of 50°C.

Curves n° 1 - 2 - 3 = setting ranges

#### OVERALL DIMENSIONS

# REDUCING VALVE PVR.3... CETOP 3/NG6 PVS.3... CETOP 3/NG6 PVS.3... CETOP 3/NG6 Type of adjustment M Plastic knob with material specifications min. 8.8 Tightening torque 5 Nm / 0.5 Kgm

#### **O**VERALL DIMENSIONS



PVR.5 / PVS.5..

#### PV\*.5 / PV\*.U.5 PRESSURE REDUCING AND SEQUENCING VALVES CETOP 5/NG10

খ্যদ brevini

These subplate mounting piloted type pressure reducing and sequencing valves ensure a minimum variation in their calibrated pressure value with changing flow rate.

They are normally supplied with internal piloting and internal drainage on B, but they are already provided with a hole on the front cover to allow for external drainage.

They are available with two different types of adjustment and three calibrated ranges that cover pressure 7 ÷ 250 bar, with and without check valve.

The adjustment is carried out by means of a grub screw or a metric plastic knob.

Max. pressure 320 bar Setting ranges Spring 1 max. 60 bar Spring 2 max. 120 bar

max. 250 bar Spring 3

Maximum allowed  $\Delta p$  pressure between the inlet and outlet pressure (PVR only) 150 bar

Max. flow 90 l/min Draining on port T 0.5 ÷ 0.7 l/min Hvdraulic fluids Mineral oils DIN 51524

Fluid viscosity 10 ÷ 500 mm<sup>2</sup>/s Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C

Max. contamination level class 10 in accordance

with NAS 1638 with filter B<sub>25</sub>≥75 Weight (without check valve)

Weight (reducing valve with check valve) 4,2 Kg Weight (sequencing valve with check valve) 4,5 Kg

#### **ORDERING CODE**

PV\*

R = Reducing valve S = Sequencing valve



Check valve (omit if not required)



CETOP 5/NG10



Type of adjustment: M = Plastic knob



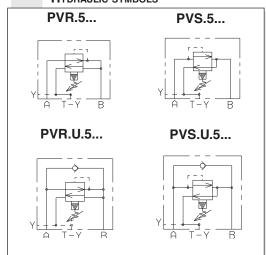
C = Grub screw



Setting ranges

1 = max. 60 bar (white spring) 2 = max. 120 bar (yellow spring)

3 = max. 250 bar (green spring)

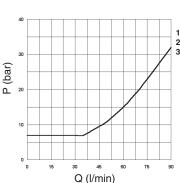

\*\*

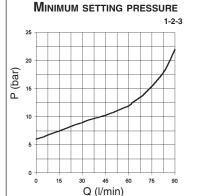
00 = No variant V1 = Viton

1

Serial No.

#### **H**YDRAULIC SYMBOLS



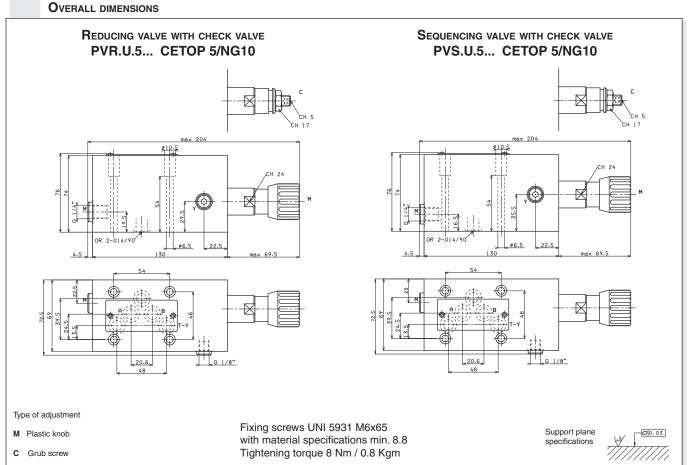


#### **DIAGRAMS**

# PVR.5... / PVR.U.5... PRESSURE - FLOW RATE 3 P (bar) 2 <sup>30</sup>Q (l/m<sup>45</sup>in)

## PVS.5... / PVS.U.5... PRESSURE - FLOW RATE 3 (bar) Ω Q (I/min) PVS.5... / PVS.U.5...

### PVR.5... / PVR.U.5... MINIMUM SETTING PRESSURE






Curves n° 1 - 2 - 3 = setting ranges

The fluid used is a mineral oil with viscosity of 46 mm<sup>2</sup>/s a 40°C. The tests were carried out at a fluid temperature of 50°C.

#### **O**VERALL DIMENSIONS

# REDUCING VALVE **S**EQUENCING VALVE PVR.5... CETOP 5/NG10 PVS.5... CETOP 5/NG10 G 1/8" Type of adjustment Fixing screws UNI 5931 M6x65 with material specifications min. 8.8 Support plane **0**0.03 M Plastic knob Tightening torque 8 Nm / 0.8 Kgm C Grub screw



| V.*.P / V.*.L              | •••              |
|----------------------------|------------------|
| V.*.P                      | Ch. II page 7    |
| V.*.P.E                    | CH. II PAGE 8    |
| V.*.L                      | CH. II PAGE 9/10 |
| BS.VMP                     | CH. II PAGE 11   |
| KEC.16/25                  | Ch. V PAGE 9     |
| C*P.16/25                  | Ch. V PAGE 9     |
| CETOP 3/NG06               | Ch. I page 8     |
| STANDARD SPOOLS FOR AD.3.E | Ch. I page 10    |
| AD.3.E                     | CH. I PAGE 11    |
| AM.3.VM                    | Ch. IV PAGE 9    |

#### **ORDERING CODE**

٧

Valve

**M** = maximum pressure

S = sequence

 $\mathbf{U} = \text{exclusion (areas rep. 1,15:1)}$ 

P = Plate mounting

L = In line mounting

E = Presetting for solenoid valve Not for sequencing valve V.S.P... (omit if not required)

\*\*\*

Size (see overall dimensions)

**16 - 25** = NG16 or NG25

**161 - 251** = for V.\*.L... only

(in line mounting valve)

Type of adjustment:

M = Plastic knob

C = Grub screw

\*

Setting ranges

 $1 = 15 \div 45$  bar (white spring)

 $2 = 15 \div 145$  bar (yellow spring)

 $3 = 45 \div 400$  bar (green spring)

00 = No variant

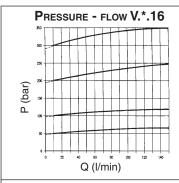
V1 = Viton

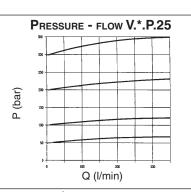
AC = Exclusion valve for

accumulators (only for VU\*, logic element areas rep. 12.5 : 1)

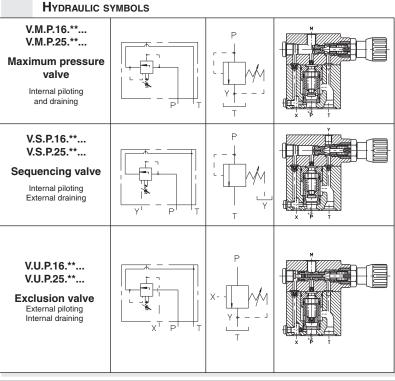
AQ = Presetting for XP3

2 Serial No.

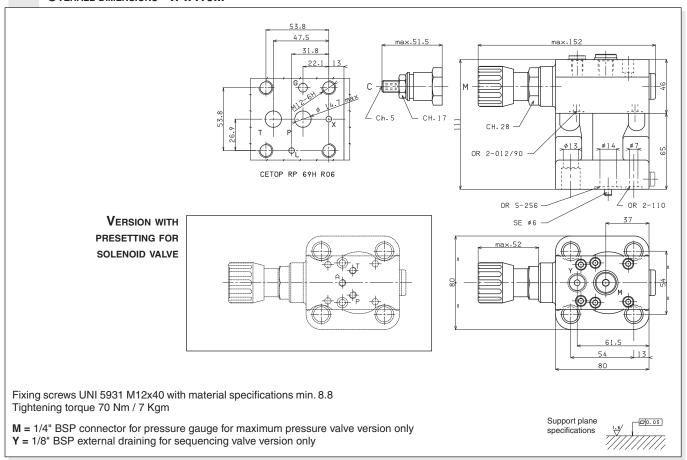

#### V.\*.P Pressure control valves plate V.\*.L Pressure control valves in line


এদ brevini

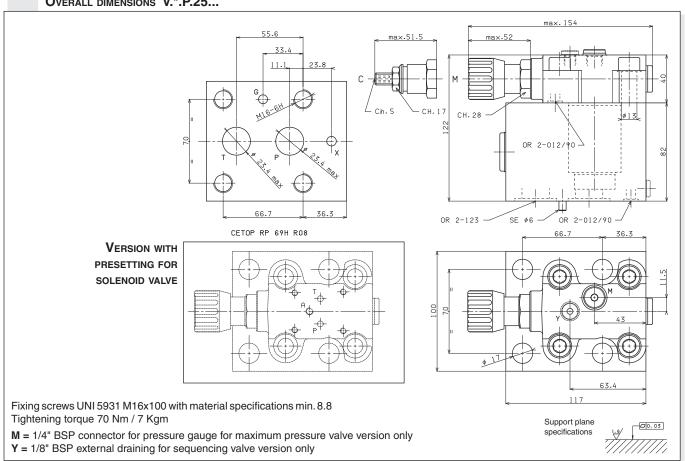
These pressure control valves are available in the basic VMP\* maximum pressure, VSP\* sequence and VUP\* exclusion versions, with a single pressure value and three calibration ranges that coverthe band 15 ÷ 400 bar. It is possible to use auxiliary pilot valves, which can be the simple standard AD3E solenoid valve, by the mere exchange of covers. These valves have been fitted with an important safety feature for the operation of the system where they are used; a mechanical end of stroke stop prevents the operator from setting pressure values higher than those specified in the catalogue (it is impossible to compress the spring completely). In the standard configuration these valves are supplied with a 1.6 bar main spring and with calibrated ø1 mm pilot feed orifice (Variant part No. 00).


Subplate mounting valves are suitable for covers which do not conform to DIN standards type C\*P16/25.. whilst in line mounting valves are suitable for DIN standards covers type KEC16/25...

400 bar Pressure max. Setting ranges Spring 1 15 ÷ 45 bar Spring 2 15 ÷ 145 bar Spring 3 45 ÷ 400 bar Max. flow V\*P16... 150 l/min Max. flow V\*P25... 350 l/min Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity  $10 \div 500 \text{ mm}^2/\text{s}$ Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C Max. contamination level class 10 in accordance with NAS 1638 with filter  $\beta_{25} \ge 75$ Drainage V\*P16... 1 ÷ 2 l/min Drainage V\*P25... 1 ÷ 2.5 l/min Max. 2 bar Dynamic pressure at drainage Weight V\*P16... (without pilot valve) 3,3 Kg Weight V\*P25... (without pilot valve) 7,4 Kg Weight V\*L16... (without pilot valve) 4,6 Kg Weight V\*L161... (without pilot valve) 4,5 Kg Weight V\*L251... (without pilot valve) 7,7 Kg Weight V\*L25... (without pilot valve) 8,3 Kg





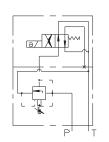


The fluid used is a mineral oil with viscosity of 46 mm<sup>2</sup>/s at 40°C. The tests were carried out at a fluid temperature 40°C.



#### OVERALL DIMENSIONS V.\*.P.16...



#### OVERALL DIMENSIONS V.\*.P.25...

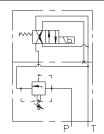


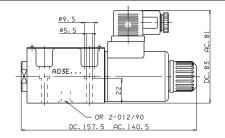


#### MOUNTING TYPE V.\*.P.E...

#### V.\*.P.E... + AD.3.E.15.E... or AD.3.E.16.E...

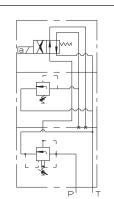
- 1) Solenoid de-energized, pump to tank.
- 2) Solenoid energized, circuit pressure controlled by valve on cover.

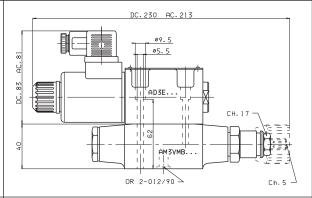

For mounting valves to have normally discharged configuration it is necessary to use an AD.3.E.15.F.. or AD.3.E.16.F... type solenoid valve, whilst for subplate mounting valves it is necessary to use type AD.3.E.15.E.. or AD.3.E.16.E.





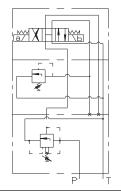

#### V.\*.P.E... + AD.3.E.15.F... or AD.3.E.16.F...

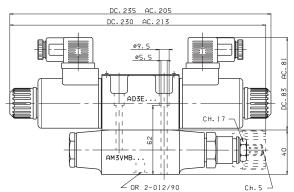

- 1) Solenoid de-energized, pump pressure controlled by valve on cover.
- 2) Solenoid B energized, pump to tank.





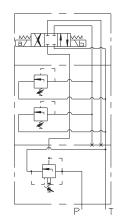

# V.\*.P.E... + AM.3.VM.B... + AD.3.E.15.E... or AD.3.16.E...

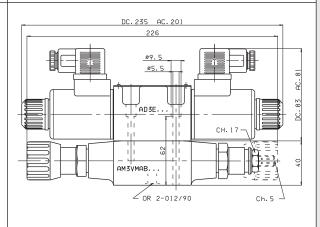

- 1) Solenoid de-energized, pump pressure controlled by valve on cover.
- 2) Solenoid energized, pump pressure controlled by valve AM.3.VM.B.  $\label{eq:controlled}$



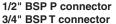


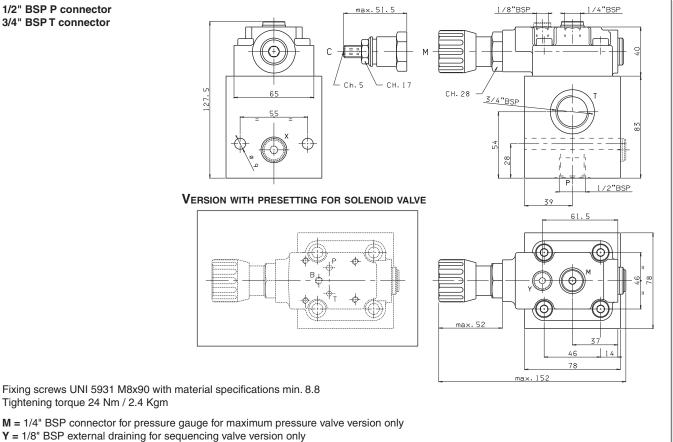

# V.\*.P.E... + AM.3.VM.B... + AD.3.E.02.C...


- 1) Solenoid de-energized, pump to tank.
- 2) Solenoid A energized, pump pressure controlled by valve AM.3.VM.B.
- 3) Solenoid B energized, pump pressure controlled by valve on cover.

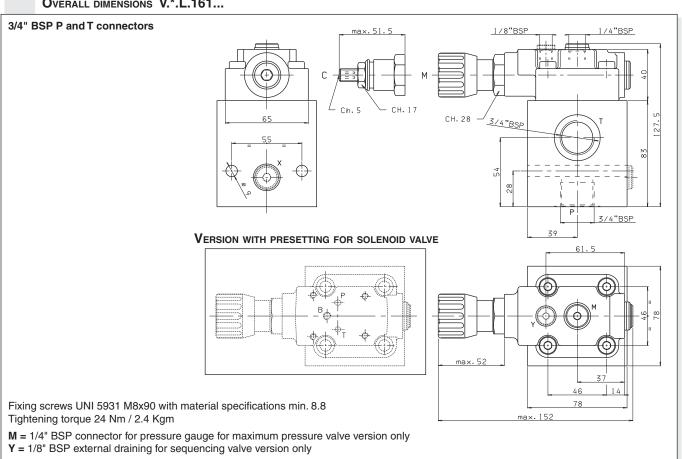




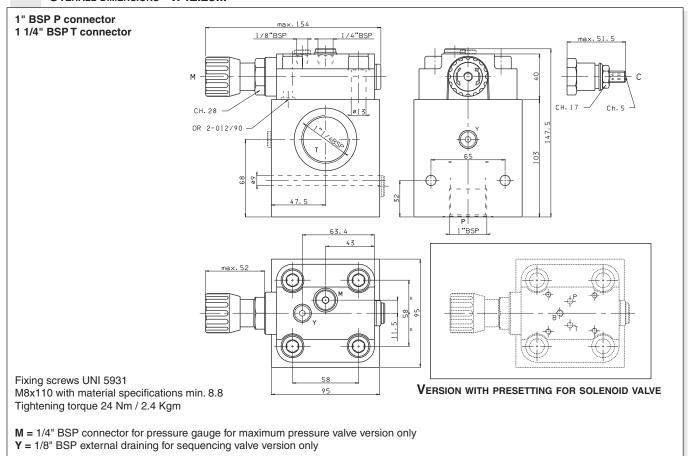


# V.\*.P.E... + AM.3.VM.B... + AD.3.E.01.C...


- 1) Solenoid de-energized, pump pressure controlled by valve on cover.
- 2 ) Solenoid A energized, pump pressure controlled by valve AM.3.VM.AB.
- 3) Solenoid B energized, pump pressure controlled by valve AM.3.VM.AB.

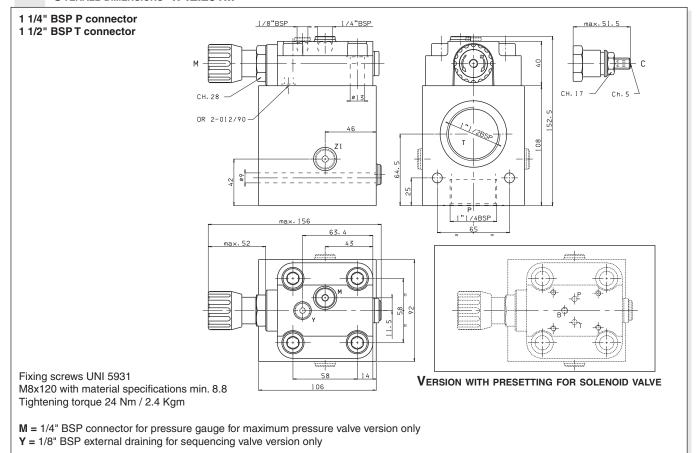




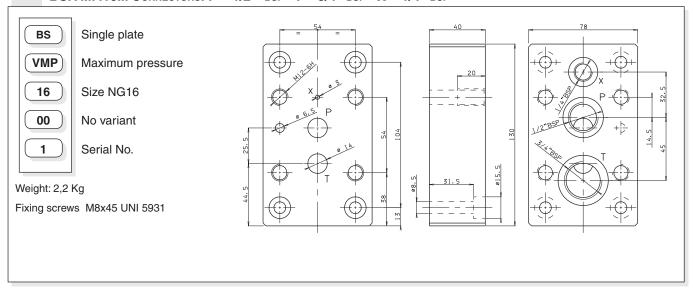

#### OVERALL DIMENSIONS V.\*.L.16...



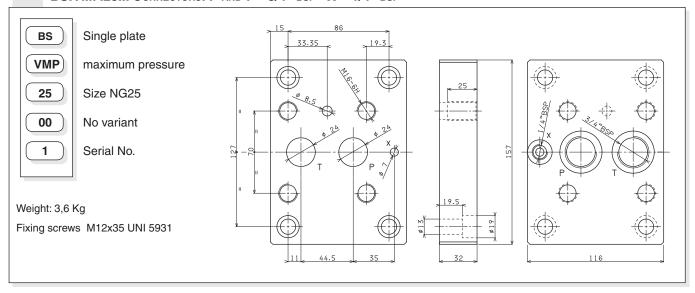




#### OVERALL DIMENSIONS V.\*.L.161...

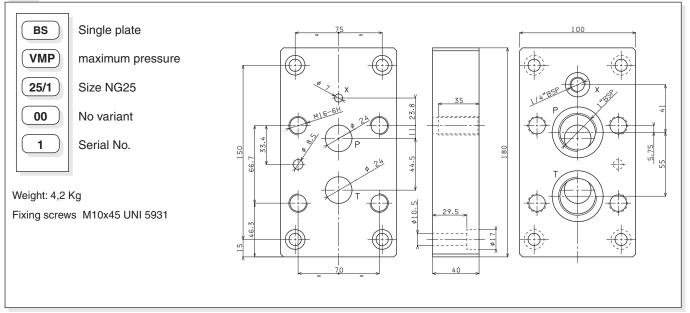



#### OVERALL DIMENSIONS V.\*.L.25...




#### OVERALL DIMENSIONS V.\*.L.251...




#### BS.VMP.16... CONNECTORS: P = 1/2" BSP - T = 3/4" BSP - X = 1/4" BSP



#### BS.VMP.25... Connectors: P and T = 3/4" bsp - X = 1/4" bsp



#### BS.VMP.25/1... Connectors: P and T = 1" BSP - X = 1/4" BSP



#### **A**BBREVIATIONS AP HIGH PRESSURE CONNECTION AS Phase Lag (DEGREES) BP LOW PRESSURE CONNECTION STROKE (MM) С CH ACROSS FLATS Сн INTERNAL ACROSS FLATS DA AMPLITUDE DECAY (DB) DΡ DIFFERENTIAL PRESSURE (BAR) F FORCE (N) **l**% INPUT CURRENT (A) M MANOMETER CONNECTION NG KNOB TURNS OR SEAL RING LOAD PRESSURE (BAR) **PARBAK** PARBAK RING PL Parallel connection $\mathbf{P}_{\mathsf{R}}$ REDUCED PRESSURE (BAR) Q FLOW (L/MIN) $\mathbf{Q}_{\mathsf{P}}$ PUMP FLOW (L/MIN) ELASTIC PIN SE SF Ball SR SERIES CONNECTION X **PILOTING** Υ DRAINAGE

# COMPENSATED FLOW REGULATORS



| QC.3.2  |               |
|---------|---------------|
|         | Ch. II Page 2 |
| QC.3.3  |               |
|         | CH. II PAGE 3 |
| QCV.3.2 |               |
|         | Ch. II Page 5 |

# CHECK VALVE HOLDER FOR REGULATORS



AM.3.ABU... Ch. II Page 4



QC.3.2...

OVERALL DIMENSIONS

Ch. III PAGE 4

These QC.3.2... compensated flow rate regulators are designed to control and maintain a constant irrespective of the pressure variations upstream and downstream of the regulation section. Their new cast construction has made it possible to obtain a wider flow rate range, taking the upper limit to 35 l/min (4 turns version) while maintaining unchanged the pressure differential required to obtain good pressure compensation.

All models are available with and without reverse flow check valve, complete with an "anti-jump" device on request. This accessory has been designed to eliminate the problem which manifests itself as a "anti-jump" in the controlled actuator due to the instantaneous flow rate variation that takes place under the form of a transient every time the flow is made to pass through the regulator.

Max. operating pressure 320 bar Opening pressure (with bypass) 1 bar Min. regulated flow rate (Q1 version) 0.03 ÷ 0.05 l/min Nominal regulated flow rate (1 turn version) 1,5 ÷ 30 l/min Nominal regulated flow rate (4 turns version) 1,5 ÷ 35 l/min Difference in pressure (Δp) for vers. Q1 3 har Difference in pressure ( $\Delta p$ ) Q2-Q3-Q4-Q5-Q6 8 bar Hvdraulic fluids Mineral oils DIN 51524 Fluid viscosity  $10 \div 500 \text{ mm}^2/\text{s}$ Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C Max. contamination level(\*) class 10 in accordance with NAS 1638 with filter  $\beta_{25} \ge 75$ Dependency on temperature (Q1 vers.) Dependency on temperature (Q2 vers.) 3% Dependency on temperature (Q3-Q4-Q5-Q6) 2% 1,5 Kg

(\*) Max contamination level must be respect to obtain the right function of the valve

#### **ORDERING CODE**

QC

Compensated flow rate regulated

3

CETOP 3/NG6

2

2 way

G

Anti-jump system with internal check valve (omit if not required)

\*\*

Nominal flow rate ranges

1 Turn version 4 Turn version

Q1 = 1.5 l/min Q1 = 1.5 l/min

Q2 = 3 l/min Q2 = 4 l/min

Q3 = 10 l/minQ3 = 9 I/min

**Q4** = 19 l/min **Q4** = 21 l/min

**Q5** = 24 l/min **Q5** = 28 l/min

**Q6** = 30 l/min **Q6** = 35 l/min

K

Version with lock (omit if not required)

\*

1 = 1 turn version

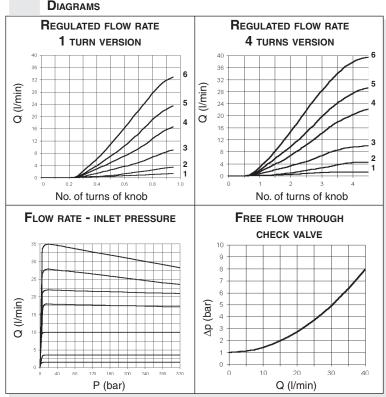
4 = 4 turns version

R

With internal check valve (omit if not required)

\*\*

00 = No variant


V1 = Viton

5

Serial No.

# **HYDRAULIC SYMBOLS** QC.3.2... QC.3.2.\*\*.\*.R QC.3.2.G.\*\*.\*.R

#### **DIAGRAMS**





Compensated flow rate regulator

Ch. III PAGE 4

Ch. III PAGE 4

CETOP 3/NG6

**ORDERING CODE** 

3 way

OVERALL DIMENSIONS

AM.3.ABU...

QC

3

3

\*\*

Κ

\*\*

3

Flow rate ranges

Q1 = 1 l/min

**Q2** = 3 l/min

Q3 = 9 I/min**Q4** = 17 l/min

Q5 = 24 l/min

Version with lock (omit if not required)

1 = 1 turn version

4 = 4 turns version

00 = No variant

V1 = Viton

Serial No.

## QC.3.3... 3 WAY COMPENSATED

**FLOW RATE REGULATORS** 

This regulator type can be used whenever it is necessary to obtain a constant fluid flow irrespective of the pressure variations present upstream or downstream. It is fitted with a third T line for discharging any excessive flow rate.

When the reverse flow check valve is needed, the check valve holder type "AM.3.ABU.3..."can be fitted underneath the valve. (The check valve holder must be ordered separately see page III•4)

এন brevini

Max. operating pressure 320 bar Opening pressure (with bypass) 1 bar

Min. regulated

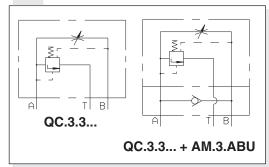
flow rate (Q1 version) 0.03 ÷ 0.05 l/min

Nominal regulated

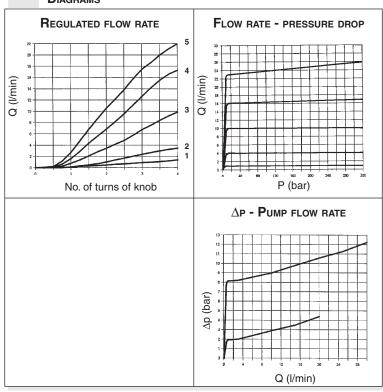
flow rate 1 ÷ 22 l/min Difference in pressure (Δp) for vers. Q1 3 bar Difference in pressure (Δp) Q2-Q3-Q4-Q5-Q6 8 bar Hydraulic fluids Mineral oils DIN 51524

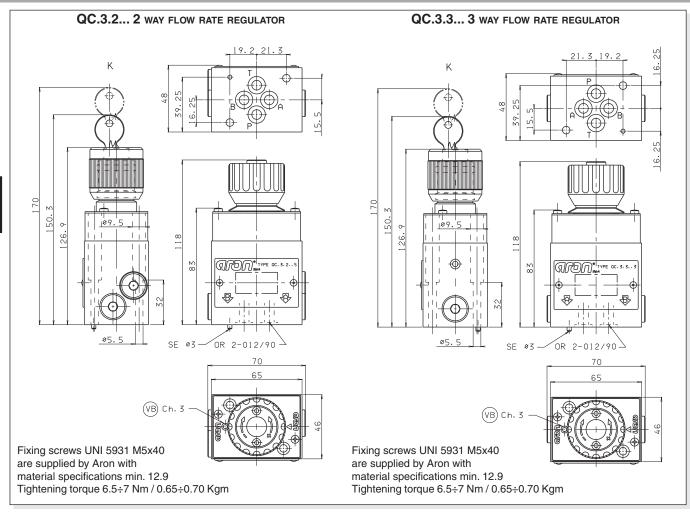
Fluid viscosity 10 ÷ 500 mm<sup>2</sup>/s Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C

Max. contamination level(\*) class 10 in accordance


with NAS 1638 with filter B<sub>25</sub>≥75

Dependency on temperature (Q1 vers.) 5% Dependency on temperature (Q2 vers.) 3%


Dependency on temperature (Q3-Q4-Q5) 2% 1,5 Kg


(\*) Max contamination level must be respect to obtain the right function of the valve

#### **HYDRAULIC SYMBOLS**

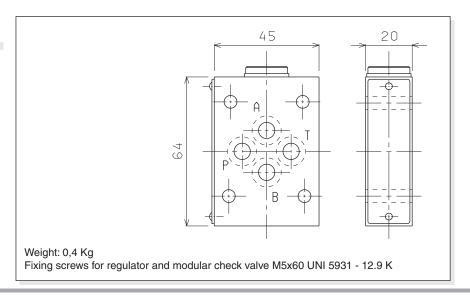


#### **DIAGRAMS**





File: FTQC3\$00\$ 00/2000/e




# AM.3.ABU... CHECK VALVE HOLDER FOR REGULATORS TYPE QC.3...

*₩* brevini

This check valve holder must be fitted underneath the QC valve when he reverse flow function is needed.

# ORDERING CODE AM Modulating valve CETOP 3/NG06 External check valve for QC.3.\*. For 2 way and 3 way No variant Serial No.







# QCV.3.2... 2 Way compensated flow rate

REGULATORS WITH ADJUSTABLE  $\Delta$ P

এন brevini

Compensated flow regulators with antijump system and adjustable differential pressure can be defined as hydraulic power control units. Their design is suitable to circuits in which the flow rate has to be automatically operated as a function of the actuator working pressure.

For application requirements, please contact our technical service that can help you to chose the right valve and use it properly.

Max. operating pressure 320 bar Nominal regulated flow rate 1 ÷ 24 l/min Hydraulic fluids Mineral oils DIN 51524 Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C Fluid viscosity 10 ÷ 500 mm<sup>2</sup>/s Max. contamination level(\*) class 10 in accordance with NAS 1638 with filter β<sub>25</sub>≥75 Weight

(\*) Max contamination level must be respect to obtain the right function of the valve

#### QCV.3.2...

#### **ORDERING CODE**

QCV Compensated flow rate regulated with adjustable ∆p

3 CETOP 3/NG06

2G Pre-setting for external operating

\*\* Flow rate ranges

Q1 = 1.5 l/min

 $\mathbf{Q2} = 3 \text{ l/min}$ 

Q3 = 9 I/min

Q4 = 19 I/min

Q5 = 24 l/min

1 = 1 turn version

4 = 4 turns version

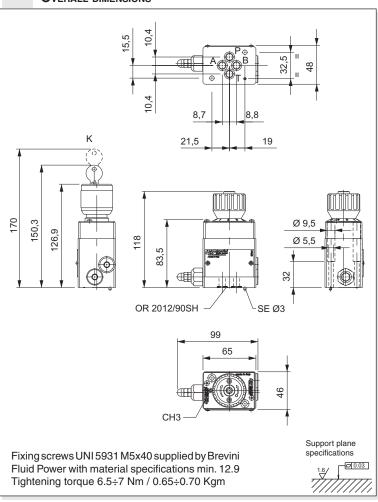
Internal check valve (omit if not required)

00 = No variants

**V1** = Viton

FS = Sintered filters (Q1/Q2 only)

**KK** = Version with tightening key


5 Serial No

R

\*\*

# HYDRAULIC SYMBOL В

#### **OVERALL DIMENSIONS**



#### **A**BBREVIATIONS

|            | ADDREVIATIONS               |
|------------|-----------------------------|
| AP         | HIGH PRESSURE CONNECTION    |
| AS         | Phase Lag (DEGREES)         |
| BP         | Low pressure connection     |
| С          | STROKE (MM)                 |
| CH         | ACROSS FLATS                |
| Сн         | INTERNAL ACROSS FLATS       |
| DA         | AMPLITUDE DECAY (DB)        |
| <b>D</b> P | DIFFERENTIAL PRESSURE (BAR) |
| F          | Force (N)                   |
| <b>I%</b>  | INPUT CURRENT (A)           |
| M          | Manometer connection        |
| NG         | Knob turns                  |
| OR         | SEAL RING                   |
| Р          | Load pressure (bar)         |
| PARBAK     | Parbak ring                 |
| PL         | Parallel connection         |
| PR         | Reduced pressure (bar)      |
| Q          | FLOW (L/MIN)                |
| <b>Q</b> P | Pump flow (L/min)           |
| SE         | ELASTIC PIN                 |
| SF         | Ball                        |
| SR         | Series connection           |
| X          | PILOTING                    |
| Υ          | Drainage                    |

# Modular valves CETOP 2



| AM.2.UD             |                |
|---------------------|----------------|
| AIVI.2.0D           |                |
|                     | Ch. IV PAGE 2  |
| AM.2.UP             |                |
| / <u></u>           |                |
|                     | Ch. IV PAGE 3  |
| AM.2.VM             |                |
| /\lvi v ivi         |                |
|                     | CH. IV PAGE 4  |
|                     | On The Trial T |
| AM.2.QF             |                |
|                     |                |
|                     | Ch. IV page 5  |
| SCREWS AND STUDS    |                |
| 00.12.107.112 01020 |                |
|                     | CH. IV PAGE 6  |
|                     | OH. IV FAGE O  |

# Modular valves CETOP 5



| AMELID                 |                |
|------------------------|----------------|
| AM.5.UD                |                |
|                        | Ch. IV PAGE 22 |
| AM.5.UP                |                |
|                        | Ch. IV PAGE 23 |
| AAA 5 \/AA / AAA 5 \/I | On. TV FAGE 20 |
| AM.5.VM / AM.5.VI      |                |
|                        | CH. IV PAGE 24 |
| AM.5.CP                |                |
|                        | Ch. IV page 26 |
| AM.5.VR                | On. IV TAGE 20 |
| AIVI.5. V H            |                |
|                        | Ch. IV page 27 |
| AM.5.VS                |                |
|                        | Ch. IV page 29 |
| AM.5.SH                |                |
| AIVI.3.31 I            | 0 11/ 00       |
|                        | Ch. IV PAGE 30 |
| AM.5.QF                |                |
|                        | Ch. IV PAGE 31 |
| AM.88                  |                |
| 71101.00               | O. IV 5.05 00  |
|                        | Ch. IV page 33 |
| A.88                   |                |
|                        | CH. IV PAGE 34 |
| AM.5.RGT               |                |
| ,                      | CH. IV PAGE 35 |
|                        | CH. IV PAGE 35 |
| SCREWS AND STUDS       |                |
|                        | Ch. IV PAGE 36 |

# Modular valves CETOP 3



| AM.3.UD            |                |
|--------------------|----------------|
|                    | Ch. IV PAGE 7  |
| AM.3.UP / AM.3.UP1 |                |
|                    | CH. IV PAGE 8  |
| AM.3.VM / AM.3.VI  |                |
|                    | Ch. IV PAGE 9  |
| AM.3.CP            |                |
|                    | CH. IV PAGE 11 |
| AM.3.RD / AM.3.SD  |                |
|                    | CH. IV PAGE 12 |
| AM.3.VR            |                |
|                    | CH. IV PAGE 13 |
| AM.3.VS            |                |
|                    | CH. IV PAGE 15 |
| AM.3.SH            |                |
|                    | CH. IV PAGE 16 |
| AM.3.QF            |                |
|                    | CH. IV PAGE 17 |
| AM.66              |                |
|                    | CH. IV PAGE 18 |
| A.66               |                |
|                    | CH. IV PAGE 19 |
| AM.3.RGT           |                |
|                    | Ch. IV PAGE 20 |
| SCREWS AND STUDS   |                |
|                    | CH. IV PAGE 21 |
|                    |                |

# Modular valves CETOP 7



| AM.7.UP |                |
|---------|----------------|
|         | CH. IV PAGE 37 |
| AM.7.QF |                |
|         | CH. IV PAGE 38 |



#### AM.2.UD...

SCREWS AND STUDS CH. IV PAGE 6

#### AM.2.UD... MODULAR DIRECT CHECK VALVES CETOP 2

খ্যদ brevini

AM.2.UD type modular check valves allow one way free flow, while preventing any flow in the opposite direction by means of a conical seated poppet.

They are available on single P and T lines (see hydraulic symbols).

1 bar spring is standard, while a 5 bar rated spring is available on request.

Max. operating pressure 250 bar Minimum opening pressure spring 1 1 bar Minimum opening pressure spring 5 5 bar 20 l/min Max. flow Hydraulic fluids Mineral oils DIN 51524 10 ÷ 500 mm<sup>2</sup>/s a 50°C Fluid viscosity Fluid temperature -20°C ÷ 75°C Max. contamination level class 10 in accordance with NAS 1638 with filter  $B_{2s} \ge 75$  0,4 Kg Weight

#### **O**RDERING CODE

AM2

Modular valve

CETOP 2/NG4

UD

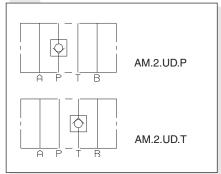
Direct check valve

Control on lines P/T

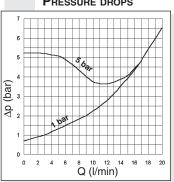
\*\*

1

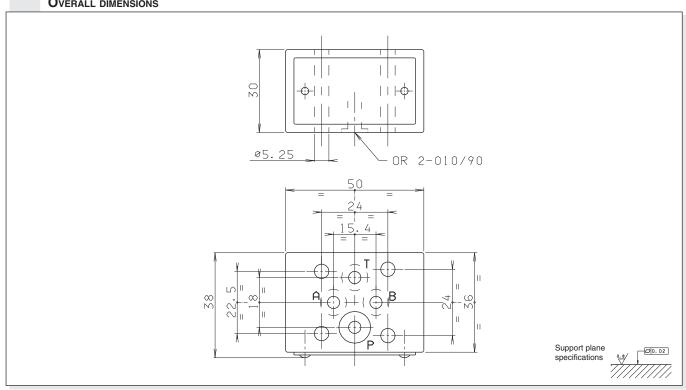
Minimum opening pressure


1 = 1 bar5 = 5 bar

00 = No variant


V1 = Viton

Serial No.


#### HYDRAULIC SYMBOLS



#### PRESSURE DROPS



#### **OVERALL DIMENSIONS**





#### AM.2.UP...

SCREWS AND STUDS CH. IV PAGE 6

#### AM.2.UP... MODULAR PILOT OPERATED CHECK VALVES CETOP 2

AM.2.UP type modular check valves allow one way free flow by raising a conical shutter, while in the opposite direction the fluid can return by means of a small piston piloted by the pressure in the other line.

They are available on single A or B lines, and on double A and B lines (see hydraulic symbols ).

খ্যদ brevini

Max. operating pressure 250 bar Minimum opening pressure spring 1 1 bar Minimum opening pressure spring 5 5 bar Piloting ratio: 1:4 Max. flow 20 l/min Mineral oils DIN 51524 Hydraulic fluids 10 ÷ 500 mm<sup>2</sup>/s a 50°C Fluid viscosity Fluid temperature -20°C ÷ 75°C Max. contamination level class 10 in accordance with NAS 1638 with filter B<sub>os</sub>≥75 Weight 0,5 Kg

#### **ORDERING CODE**

ΑM

Modular valve

2

CETOP 2/NG4

UP

Piloted check valve

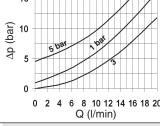
\*\*

Control on lines A / B / AB

\*

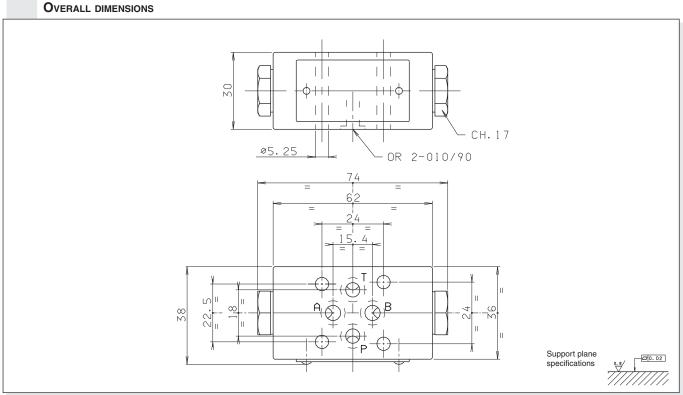
Minimum opening

pressure


1 = 1 bar5 = 5 bar

00 = No variant

V1 = Viton


1 Serial No.

# PRESSURE DROPS 15



Curve n. 3 = Piloted side flow

# HYDRAULIC SYMBOLS AM.2.UP.A AM.2.UP.B AM.2.UP.AB





#### AM.2.VM...

| CMP.02 |
|--------|
| CMP.02 |

SCREWS AND STUDS CH. IV PAGE 6

#### AM.2.VM... MODULAR MAXIMUM PRESSURE VALVES CETOP 2

AM.2.VM type pressure regulating valves are available with an operating pressure range of 4 to 250 bar.

Adjustment is via a grub screw. Two base versions are available: AM.2.VM... single on A or B, and double on A and B lines, with drainage on T; AM.3.VM.P.. single on P line, with drainage on T. 4 different types of springs can be mounted on all versions, with the adjustment range specified in the specifications. The cartridge used is the CMP.02 type.

| Max. operating pressure Setting ranges:       |                        | 250 bar      |  |  |
|-----------------------------------------------|------------------------|--------------|--|--|
| spri                                          | ng 1                   | 30 bar       |  |  |
| spri                                          | ng 2                   | 90 bar       |  |  |
| spri                                          | ng 3                   | 180 bar      |  |  |
| spri                                          | ng 4                   | 250 bar      |  |  |
| Max. flow                                     |                        | 20 l/min     |  |  |
| Hydraulic fluids                              | Mineral oi             | ls DIN 51524 |  |  |
| Fluid viscosity                               | 10 ÷ 500 r             | nm²/s a 50°C |  |  |
| Fluid temperature                             | -                      | -20°C ÷ 75°C |  |  |
| Max. contamination level                      | class 10 in accordance |              |  |  |
| with NAS 1638 with filter B <sub>25</sub> ≥75 |                        |              |  |  |
| Weight AM.2.VM.A/B/P                          |                        | 0,53 Kg      |  |  |

#### **ORDERING CODE**

ΑM

Modular valve

2

CETOP 2/NG4

VM

Max. pressure valves

\*\*

Adjustment on the lines

A/B/P/AB

С

Type of adjustment grub screw

\*

Setting ranges at port A/B/P

- 1 = max.30 bar (white spring)
- 2 = max.90 bar (yellow spring)
- 3 = max.180 bar (green spring)
- 4 = max.250 bar (orange spring)

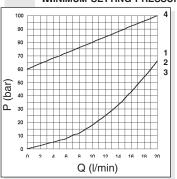
\*

Setting ranges at port B (Omit if the setting is same as that at port A)

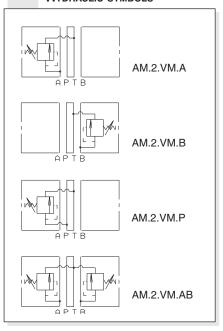
- 1 = max.30 bar (white spring)
- 2 = max.90 bar (yellow spring)
- 3 = max.180 bar (green spring)
- 4 = max.250 bar (orange spring)

\*\*

00 = No variant

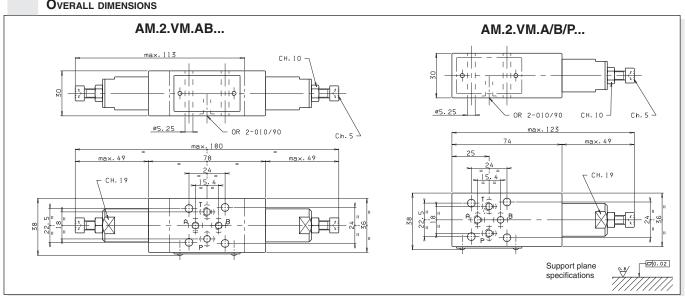

V1 = Viton

1


Serial No.

#### PRESSURE - FLOW RATE 260 220 180 160 140 120 100 60 8 10 12 14 Q (l/min)

#### MINIMUM SETTING PRESSURE




#### HYDRAULIC SYMBOLS



01/2010/e

#### **OVERALL DIMENSIONS**



Weight AM.2.VM.AB... 0,7 Kg



AM.2.QF...

CH. IV PAGE 6

# AM.2.QF... MODULAR FLOW REGULATOR CETOP 2

#### খ্যদ brevini

0,6 Kg

AM.2.QF type one way non-compensated throttle valves are adjustable by means of a grub screw.

Three types of regulations are available on A / B / AB lines, as shown in the hydraulic symbols.

Max. operating pressure 250 bar Flow rate regulation on 6 screw turns Max. flow. 20 l/min Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity 10 ÷ 500 mm<sup>2</sup>/s a 50°C Fluid temperature -20°C ÷ 75°C Max. contamination level class 10 in accordance with NAS 1638 with filter  $\beta_{25} \ge 75$ Weight AM.2.QF.A/B... 0,5 Kg

Weight AM.2.QF.AB...

Modular valve

2 CETOP 2/NG4

AM

QF

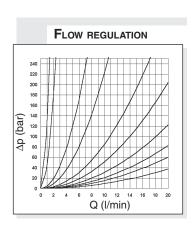
С

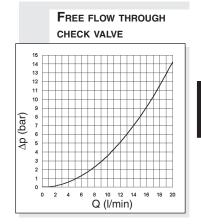
\*\*

1

**O**RDERING CODE

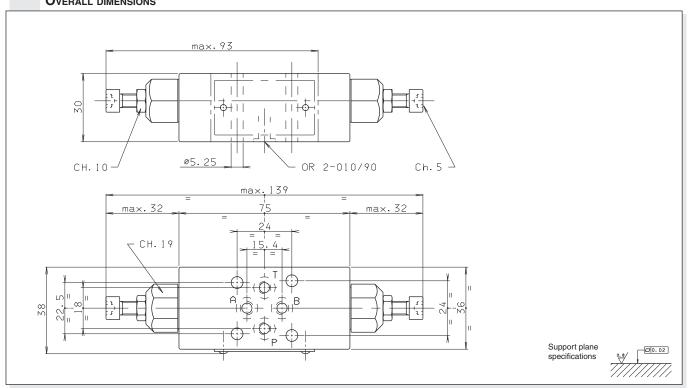
SCREWS AND STUDS


Non-compensated flow rate regulator

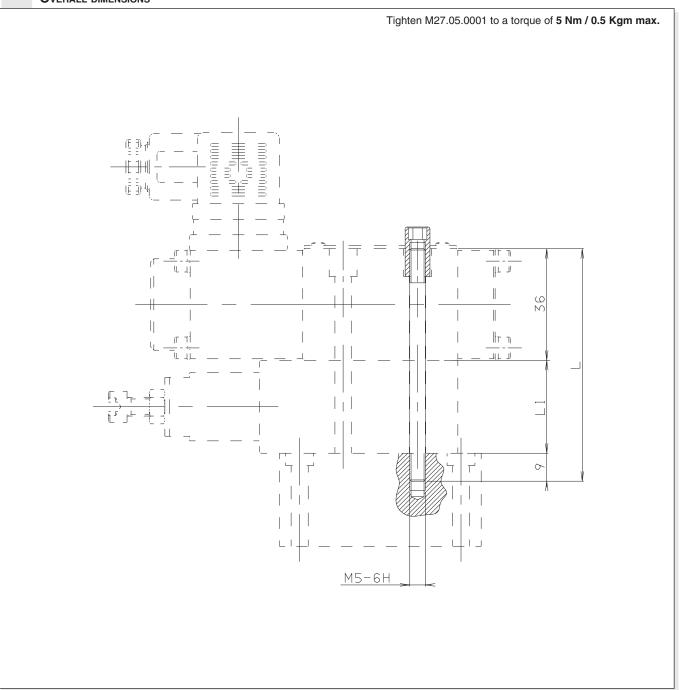

\*\* Control on lines

Type of adjustment grub screw

**00** = No variant **V1** = Viton


Serial No.






# HYDRAULIC SYMBOLS AM.2.QF.A AM.2.QF.A AM.2.QF.AB





#### OVERALL DIMENSIONS



| SCREWS T.C.E.I<br>CODE | <b>L</b><br>mm | <b>L1 *</b><br>mm | COMPOSITION       | Q.TY | SPECIAL NUTS<br>CODE |
|------------------------|----------------|-------------------|-------------------|------|----------------------|
| Q26074069              | 35             | _                 | AD2               | 4    |                      |
| Q26074243              | 65             | 30                | AD2 + 1 AM2 (ISO) | 4    | _                    |
| Q26074252              | 95             | 60                | AD2 + 2 AM2 (ISO) | 4    |                      |
| M80100008              | 135            | 90                | AD2 + 3 AM2       | 4    | V89240000            |
| M80100020              | 165            | 120               | AD2 + 4 AM2       | 4    | (No. 20 nuts kit)    |

<sup>\*</sup> Indicative overall dimensions valves composition

0,8 Kg

# ANJUDP 5:002

#### AM.3.UD...

SCREWS AND STUDS CH. IV PAGE 21

# AM.3.UD... MODULAR DIRECT CHECK VALVES CETOP 3

*এদ brevini* 

AM.3.UD type modular check valves allow one way free flow, while flow in the opposite direction is prevented by means of a conical seated poppet.

They are available on single A, B, P and T lines, and on double A and B, P and T lines (see hydraulic symbols).

1 bar spring is standard, while a 5 bar rated spring is available on request.

Max. operating pressure 350 bar Minimum opening pressure spring 1 1 bar Minimum opening pressure spring 5 5 bar Max. flow 40 l/min Mineral oils DIN 51524 Hydraulic fluids Fluid viscosity 10 ÷ 500 mm<sup>2</sup>/s a 50° Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C Max. contamination level class 10 in accordance with NAS 1638 with filter B<sub>os</sub>≥75

Weight

**O**RDERING CODE

**AM 3** 

UD

\*\*

2

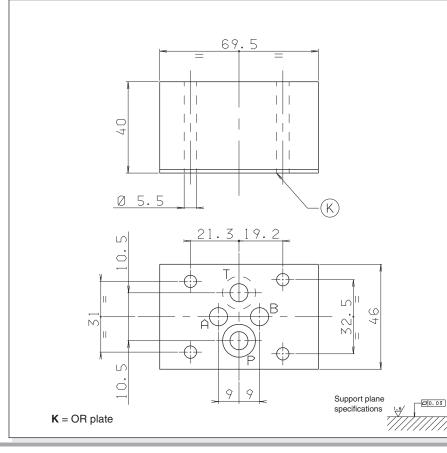
Modular valve

CETOP 3/NG6

Direct check valve

Control on lines
A/B/P/T/AB

\* Minimum opening pressure


1 = 1 bar5 = 5 bar

\*\* **00** = No variant **V1** = Viton

Serial No.

# PRESSURE DROPS To provide the provided state of the provided stat

## OVERALL DIMENSIONS



# AM.3.UD.A AM.3.UD.B AM.3.UD.P AM.3.UD.T AM.3.UD.A AM.3.UD.A

HYDRAULIC SYMBOLS

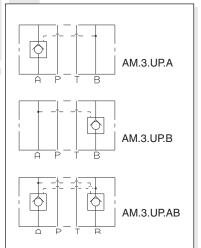
AM.3.UP... / AM.3.UP1... MODULAR



#### AM.3.UP / AM.3.UP1.

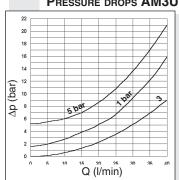
SCREWS AND STUDS

Ch. IV PAGE 21

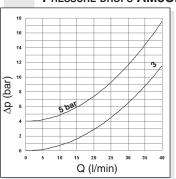

allow free flow in one direction by raising a conical seated poppet valve, while in the opposite direction the fluid can return by means of a small piston piloted by the other line pressure (piloted side).

They are available on single A or B lines, and double A and B lines (see hydraulic symbols).

A pre-opening version is also available (AM3UP1..) only with 5 bar spring.


350 bar Max. operating pressure Minimum opening pressure spring 1 1 bar Minimum opening pressure spring 5 5 bar Piloting ratio AM.3.UP 1:4 Piloting ratio AM.3.UP1 1:12,5 Max. flow 40 l/min Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity 10 ÷ 500 mm<sup>2</sup>/s Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C Max. contamination level class 10 in accordance with NAS 1638 with filter ß<sub>25</sub>≥75 Weight 1 Kg

#### HYDRAULIC SYMBOLS




The fluid used is a mineral oil with a viscosity of 46 mm<sup>2</sup>/s at 40°C. The tests have been carried

# PRESSURE DROPS AM3UP



#### PRESSURE DROPS AM3UP1



Curve n. 3 = Piloted side flow

#### **ORDERING CODE**

AM 3

\*\*

3

Modular valve

CETOP 3/NG6

**UP** = Piloted check valve

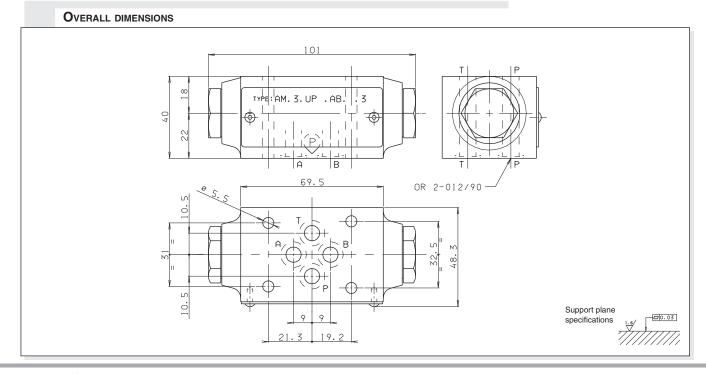
**UP1** = With pre-opening

Control on lines A / B / AB

Minimum opening pressure

1 = 1 bar (only for UP version)

5 = 5 bar


8 = 8 bar (only for UP version)

00 = No variant

V1 = Viton

Serial No.

## out a fluid temperature of 50°C.





#### AM.3.VM / AM.3.VI..

| 7                |                 |  |  |  |
|------------------|-----------------|--|--|--|
| CMP.10           | Ch. VII PAGE 30 |  |  |  |
| SCREWS AND STUDS | Ch. IV PAGE 21  |  |  |  |

# AM.3.VM... / AM.3.VI... MODULAR MAX. PRESSURE VALVES CETOP 3

খ্যদ brevini

AM.3.VM type pressure regulating valves are available with a pressure range of 2 ÷ 320 bar.

Adjustment is by means of a grub screw or a plastic knob.

Three basic versions are available:

- AM3VM on single A or B lines, and on A and B lines, with drainage to T;
- AM3VMP on single P line, with drainage to T;
- AM3VI on single A or B lines, and on A and B lines, with crossed drainage on A or B (see hydraulic symbols). All versions can accept three types of springs with calibrated ranges as shown in the specifications.

The cartridge, which is the same for all versions, is the direct acting type CMP10.

For the minimum permissible setting pressure depending on the spring, see minimum pressure setting curve.

320 bar Max. operating pressure Setting ranges: spring 1 max. 50 bar spring 2 max. 150 bar spring 3 max. 320 bar Max. flow 40 l/min Mineral oils DIN 51524 Hvdraulic fluids Fluid viscosity  $10 \div 500 \text{ mm}^2/\text{s}$ Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C Max. contamination level class 10 in accordance with NAS 1638 with filter  $\beta_{25} \ge 75$ Weight AM.3.VM.A/B/P... 1,2 Kg Weight AM.3.VM.AB... 1,3 Kg Weight AM.3.VI.A/B... 2 Kg Weight AM.3.VI.AB... 2,2 Kg

#### **ORDERING CODE**

AM

Modular valve

3

CETOP 3/NG6

\*\*

VM = Maximum pressure VI = Maximum pressure crossline

\*\*

Adjustment on the lines AM.3.VM Version = A / B / P / AB AM.3.VI Version = A / B / AB

\*

Type of adjustment **M** = Plastic knob

C = Grub screw

(\*)

Setting ranges at port A/B/P

1 = max. 50 bar (white spring)

2 = max. 150 bar (yellow spring)

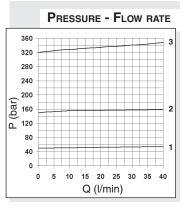
3 = max. 320 bar (green spring)

\*

Setting ranges at port B (Omit if the setting is same as that at port A)

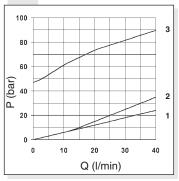
1 = max. 50 bar (white spring)

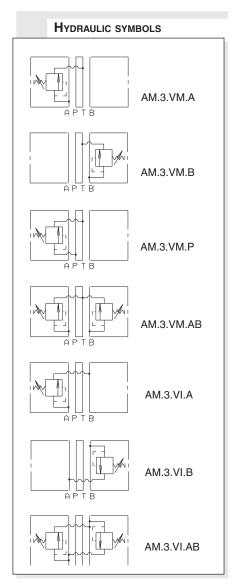
2 = max. 150 bar (yellow spring)


3 = max. 320 bar (green spring)

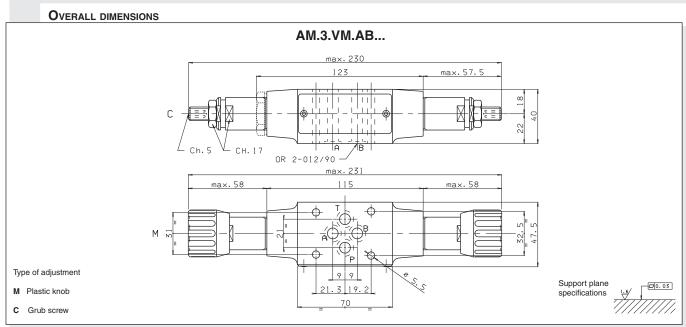
\*\*

**00** = No variant **V1** = Viton

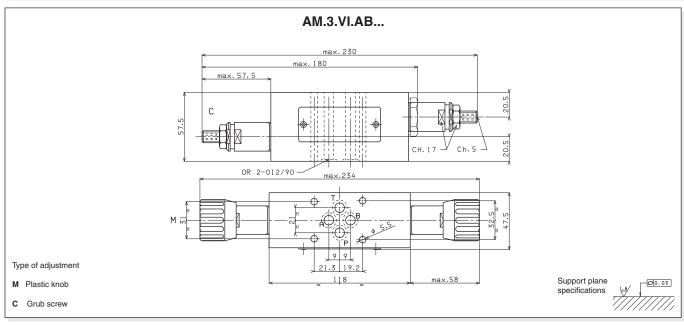

3


Serial No.




Curves n° 1 - 2 - 3 = setting ranges

#### MINIMUM SETTING PRESSURE






05/2015/e









| AM.3.CP          |                 |  |
|------------------|-----------------|--|
| CMP.10           | CH. VII PAGE 30 |  |
| SCREWS AND STUDS | Ch. IV PAGE 21  |  |

### AM.3.CP... MODULAR BACK PRESSURE VALVE CETOP 3

AM3CP type back pressure valves are damped in-line direct acting pressure relief valves fitted with bypass nonreturn valves.

Adjustment within the range 2 ÷ 320 bar is by means of a grub screw or a plastic knob, on ports A or B (single) or AB (double).

The cartridge is the direct acting type CMP10.

These valves are especially used on vertically working cylinders with dragging loads.

For the minimum permissible setting pressure depending on the spring, see minimum pressure setting curve.

#### 350 bar Max. operating pressure Setting ranges: spring 1 max. 50 bar spring 2 max. 150 bar spring 3 max. 320 bar Max. flow 40 l/min Mineral oils DIN 51524 Hydraulic fluids $10 \div 500 \text{ mm}^2/\text{s}$ Fluid viscosity Fluid temperature -25°C ÷ 75°C -25°C ÷ 60°C Ambient temperature Max. contamination level class 10 in accordance with NAS 1638 with filter β<sub>25</sub>≥75 Weight AM.3.CP.A/B... Ž Kg 2,7 Kg Weight AM.3.CP.AB...

খ্যদ brevini

### **ORDERING CODE**

AM

Modular valve

3

CETOP 3/NG6

СР

Back pressure valve

\*\*

Control on lines A/B/AB

\*

Type of adjustment

M = Plastic knob

C = Grub screw

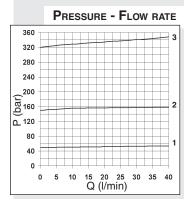
Setting ranges

1 = max. 50 bar (white spring)

2 = max. 150 bar (yellow spring)

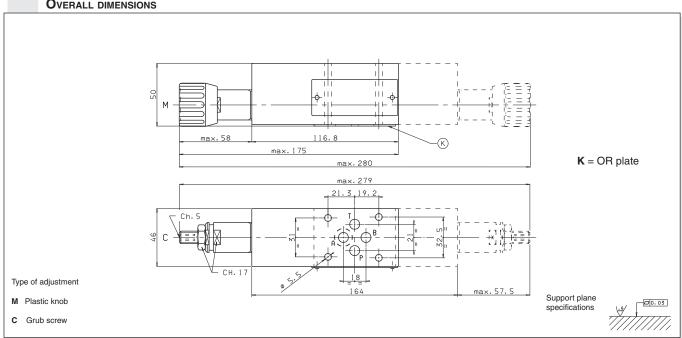
3 = max. 320 bar (green spring)

\*\*


00 = No variant

V1 = Viton

3


Serial No.

# HYDRAULIC SYMBOLS AM.3.CP.A AM.3.CP.B AM.3.CP.AB



### MINIMUM SETTING PRESSURE 100 3 60 (bar 40 2 ۵ 1 40 Q (I/min)

### **OVERALL DIMENSIONS**





#### AM.3.RD / AM.3.SD..

SCREWS AND STUDS

Ch. IV PAGE 21

### **ORDERING CODE**

ΑM

Modular valve

3

CETOP 3/NG6

**RD** = Direct pressure reducing valve SD = Direct pressure sequencing valve

\*

Control on lines

AM.3.RD version = A / P AM.3.SD version = P

1 = Positive overlap

2 = Negative overlap

Omit for version AM3SD

Type of adjustment

**C** = Grub screw V = Handwheel

Setting ranges

 $1 = \text{max. } 2 \div 30 \text{ bar (white spring)}$ 

2 = max. 10 ÷ 120 bar (yellow spring)

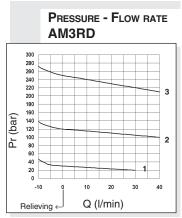
 $3 = max. 60 \div 250 bar (green spring)$ 

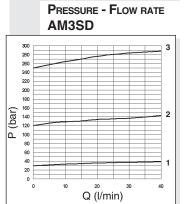
\*\*

00 = No variant

V1 = Viton

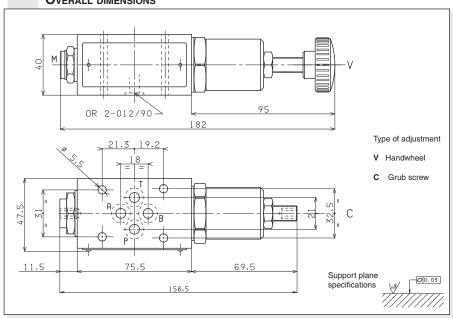
4

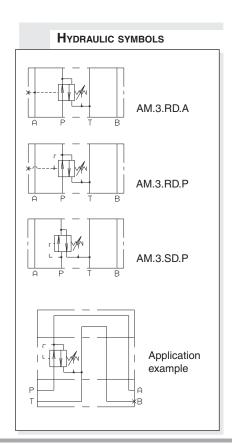

Serial No.


### AM.3.RD... /AM.3.SD... MODULAR PRESSURE REDUCING / PRESSURE SEQUENCING VALVES CETOP 3 # brevini

AM3RD and AM3SD valves are direct acting spool type pressure reducing and sequencing units, respectively, with one end pre-loaded by means of a spring an the other end exposed to the hydraulic pressure.

The drainage is drained within the valve to port T. Pressure is adjustable by means of a screw and locknut, or of a handwheel. Three types of springs allow adjustment within the range 2÷250 bar. The pressure reducing valves are available in two versions: with positive overlap (suitable with low flow rate) and with negative overlap to obtain a greater pressure reinstatement speed.


Max. operating pressure: port P 350 bar 250 bar Max. pressure adjustable Setting ranges: spring 1 2 ÷ 30 bar spring 2 10 ÷ 120 bar spring 3 60 ÷ 250 bar 40 l/min Max. flow Internal drainage RD: Positive overlap version 0.5 l/min Negative overlap version 2 l/min Hvdraulic fluids Mineral oils DIN 51524 10 ÷ 500 mm<sup>2</sup>/s Fluid viscosity Fluid temperature -25°C ÷ 75°C -25°C ÷ 60°C Ambient temperature Max. contamination level class 10 in accordance with NAS 1638 with filter B<sub>25</sub>≥75 Weight 1,3 Kg






The fluid used is a mineral based oil with a viscosity of 46 mm<sup>2</sup>/sec at 40 degrees C. The tests have been carried out at with a fluid temperature of 40 degrees C.

### **OVERALL DIMENSIONS**







|  | Α | M | .3. | ٧ | R |  |  |  |
|--|---|---|-----|---|---|--|--|--|
|--|---|---|-----|---|---|--|--|--|

CVR.20.. BFP CARTRIDGE CATALOGUE

SCREWS AND STUDS Ch. IV PAGE 21

### AM.3.VR... MODULAR REDUCING VALVES WITH RELIEVING - PILOT OPERATED CETOP 3

adjustment is available by a grub screw

The RELIEVING SYSTEM inside the

valve AM3VR allows the passage from

the setting pressure line to T line of

the flow through the valve to avoid the

increasing of pressure in the reduced-

pressure line by diverting exceeding

flow to reservoir. A bypass module

with check valve for free flow from A to AR port (see hydraulic symbol) is

or plastic knob.

Max. operating pressure 350 bar

Setting ranges: spring 1 max. 60 bar spring 2 max. 120 bar

spring 3 max. 250 bar

এন brevini

Maximum allowed ∆p pressure

between the inlet an outlet pressure 150 bar Max. flow 40 l/min Draining on port T  $0.5 \div 0.7 \text{ l/min}$ Mineral oils DIN 51524 Hydraulic fluids Fluid viscosity 10 ÷ 500 mm<sup>2</sup>/s Fluid temperature -25°C ÷ 75°C -25°C ÷ 60°C Ambient temperature Max. contamination level class 10 in accordance

with NAS 1638 with filter B<sub>25</sub>≥75

Weight 1,36 Kg Weight bypass version 2 Kg

### **O**RDERING CODE

AM Modular valve

3

\*

\*

\*\*

1

CETOP 3/NG6

**VR** Pilot operated pressure reducing valve with relieving

Control on lines

 $\mathbf{P} = \text{Drain on T}$ 

A = Drain on T

**D** = Drain on B reduct pressure on A

Drain connection

 $\mathbf{E} = \mathbf{E} \mathbf{x} \mathbf{t} \mathbf{e} \mathbf{r} \mathbf{n} \mathbf{a} \mathbf{l}$  (only for

control on the P line)

I = Internal (Standard)

В Version with bypass on line A only

Omit if not required

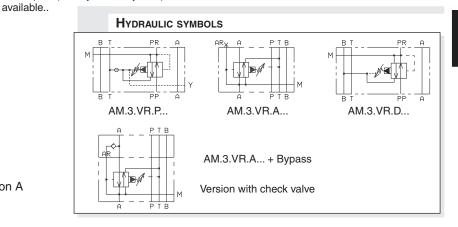
Type of adjustment

M = Plastic knob

C = Grub screw

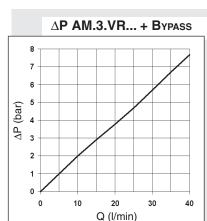
Setting ranges

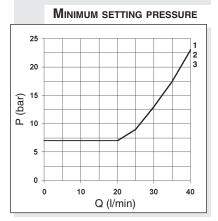
1 = max. 60 bar (white spring)


2 = max. 120 bar (yellow spring)

3 = max. 250 bar (green spring)

00 = No variant


V1 = Viton


Serial No

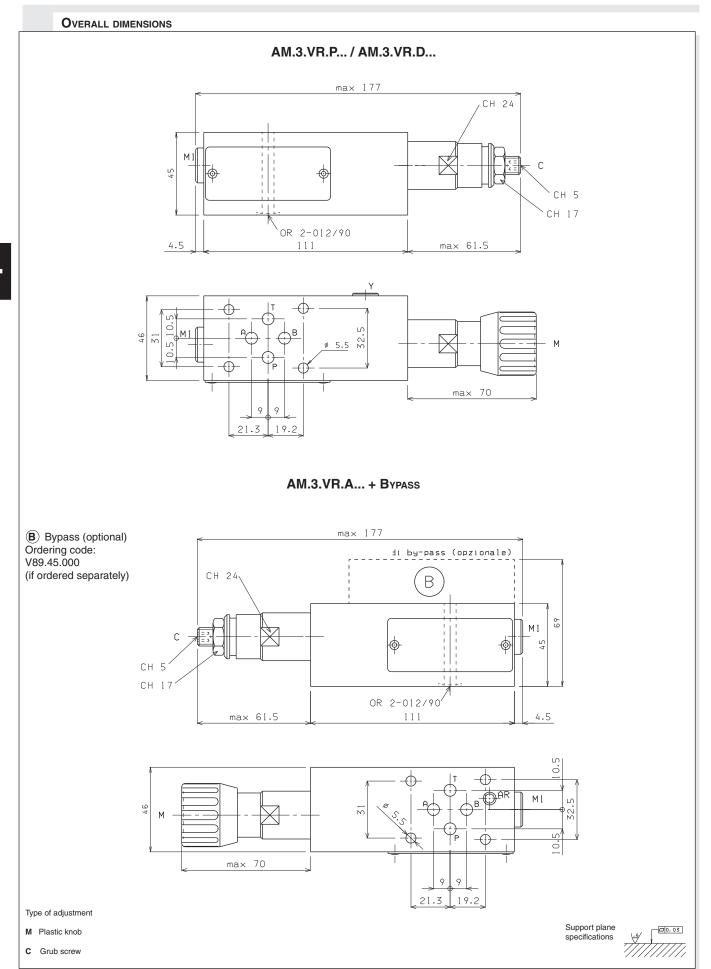


### PRESSURE-FLOW RATE 300 3 200 (bar) 2 10 20 Q (I/min)








Curves n° 1 - 2 - 3 = setting ranges


The fluid used is a mineral oil with a viscosity of 46 mm<sup>2</sup>/s at 40°C. The tests have been carried out a fluid temperature of 50°C.

To changes valves AM.3.VR.P... from internal to external drainage it is necessary:

- screw out the plug on the "Y" port
- screw out the plug T.C.E.I. M8x1 from the body
- screw in a screw S.T.E.I. M6
- rescrew the T.C.E.I. M8x1 plug on the body

NOTE: the external draining can be used as a piloting line (please, contact our Technical Service for other informations)





### AM.3.VS..

BFP CARTRIDGE CATALOGUE CVS.20..

SCREWS AND STUDS Ch. IV PAGE 21

### AM.3.VS... MODULAR SEQUENCING VALVES CETOP 3

খ্যদ brevini

The sequence valve are used to assure that a secondary circuit is pressurized when the setting pressure is reached.

These valves grant a minimum variation of the setting pressure with a changing flow up to 40 l/min (see diagram).

Three spring types allow adjustment within the range 7 ÷ 250 bar. Manual adjustment is available by a grub screw or plastic knob.

The cartridge used is the "CVS" type.

| ſ | Max. operating pr  | essure   |    | 350 bar                             |
|---|--------------------|----------|----|-------------------------------------|
|   | Setting ranges:    | Spring 1 | 1  | max. 60 bar                         |
|   |                    | Spring   | 2  | max. 120 bar                        |
|   |                    | Spring   | 3  | max. 250 bar                        |
|   | Max. flow          | _        |    | 40 l/min                            |
|   | Draining on port   | Γ        |    | 0,5 ÷ 0,7 l/min                     |
|   | Hydraulic fluids   |          | Ν  | Mineral oils DIN 51524              |
|   | Fluid viscosity    |          |    | $10 \div 500 \text{ mm}^2/\text{s}$ |
|   | Fluid temperature  | )        |    | -25°C ÷ 75°C                        |
|   | Ambient tempera    | ture     |    | -25°C ÷ 60°C                        |
|   | Max. contamination | on level | С  | class 10 in accordance              |
|   |                    | with N   | AS | 1638 with filter ß₂₅≥75             |
|   | Weight             |          |    | 1.36 Ka                             |

HYDRAULIC SYMBOL

### **ORDERING CODE**

AM

Modular valve

3

CETOP 3/NG6

VS

Sequencing valve

Drain connection

E = External

I = Internal (Standard)

Type of adjustment

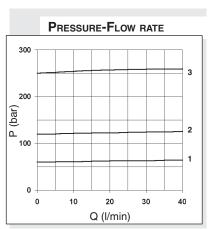
M = Plastic knob

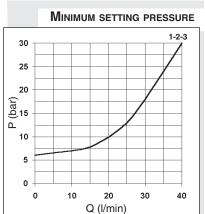
**C** = Grub screw

Setting ranges

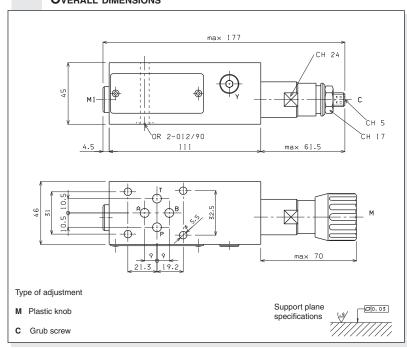
1 = max. 60 bar (white spring)

2 = max. 120 bar (yellow spring)


3 = max. 250 bar (green spring)


1

00 = No variant


V1 = Viton

Serial No





### **OVERALL DIMENSIONS**



### Curves n° 1 - 2 - 3 = setting ranges

The fluid used is a mineral oil with a viscosity of 46 mm<sup>2</sup>/s at 40°C. The tests have been carried out at a fluid temperature of 50°C.

To changes valves AM.3.VS... from internal to external drainage it is necessary:

- screw out the plug on the Y port
- screw out the plug T.C.E.I. M8x1 from the body
- screw in a screw S.T.E.I. M6
- rescrew the T.C.E.I. M8x1 plug on the body

NOTE: the external draining can be used as a piloting line (please, contact our Technical Service for other informations)

BFP CARTRIDGE CATALOGUE

SCREWS AND STUDS CH. IV PAGE 21

## AM.3.SH... MODULAR SHUTTLE VALVES CETOP 3

খদ brevini

Modular valves type AM.3.SH are actuator load pressure selecting units, as they are fitted with an integral shuttle valve cartridge which allows taking of the highest pressure signal to the external port via displacement of a ball. They are usually employed to signal the actuator load to the pressure compensator of load sensing pump, or for the command of fail-safe brakes.

For seat overall dimensions see cartridge shuttle SH.03 type.

Max. operating pressure 350 bar Max. flow at the cartridge 3 l/min Max. flow at ports A/B/P/T 40 l/min Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity  $10 \div 500 \text{ mm}^2/\text{s}$ Fluid temperature -25°C ÷ 75°C -25°C ÷ 60°C Ambient temperature Max. contamination level class 10 in accordance with NAS 1638 with filter ß<sub>25</sub>≥75 ı̃ Kg

Weight 1 Kg Cartridge tightening torque 20÷30 Nm/2÷3 Kgm

### **ORDERING CODE**

AM

SH.03...

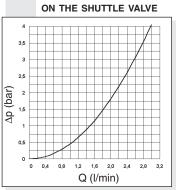
Modular valve

3

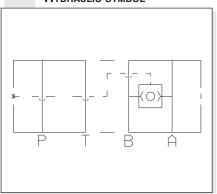
CETOP 3/NG6

SH

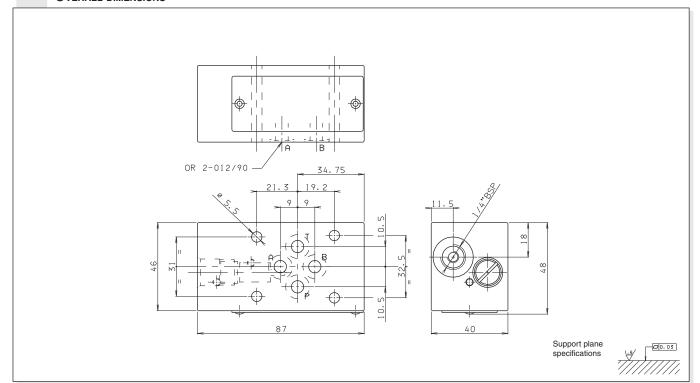
Cartridge shuttle


\*\*

1


**00** = No variant **V1** = Viton

Serial No.


### PRESSURE DROPS



### HYDRAULIC SYMBOL



### OVERALL DIMENSIONS





### AM.3.QF...

SCREWS AND STUDS

Ch. IV PAGE 21

### AM.3.QF... MODULAR FLOW REGULATOR CETOP 3

AM.3.QF type one way non-compensated throttle valve are fitted with an O-Ring mounting plate which allows its assembly for either input or output regulation. Adjustment is obtained by means of a grub screw or a plastic knob. They are available in the four regulating configurations shown in the hydraulic diagrams.

The standard valve configuration allows "meter in" regulation, while it is possible to obtain "meter out" regulation by turning the valve by 180° along its longitudinal axis.

350 bar Max. operating pressure Max. pressure adjustable 250 bar Flow rate regulation on 8 screw turns Max. flow 40 l/min Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity 10 ÷ 500 mm<sup>2</sup>/s Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C class 10 in accordance Max. contamination level

এন brevini

### **ORDERING CODE**

AM

Modular valve

3

CETOP 3/NG6

QF

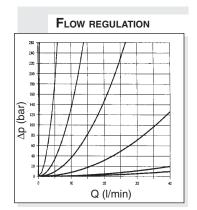
Non compensated throttle valve

\*\*

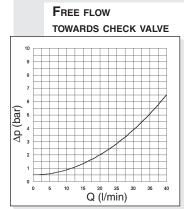
Control on lines A/B/P/AB

Type of adjustment M = Plastic knob

C = Grub screw


\*\*

00 = No variant


V1 = Viton

4

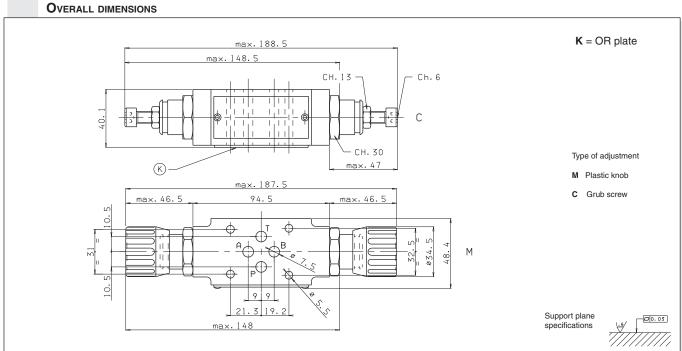
Serial No.



Weight



with NAS 1638 with filter  $\rm \beta_{25}{\ge}75$  1,5 Kg


# HYDRAULIC SYMBOLS

AM.3.QF.A

AM.3.QF.B

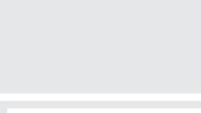
AM.3.QF.P

AM.3.QF.AB





# AM.66... MODULAR COMPENSATED FLOW CONTROL ASSEMBLY CETOP 3


খ্যদ brevini

This is an intermediate block (AM.66) for modular mounting of one or two flow rate regulators type QC.3...

The flow regulator type QC.3.2... must be ordered separately.

 $\begin{array}{cccc} \text{Max. operating pressure} & 320 \text{ bar} \\ \text{Hydraulic fluids} & \text{Mineral oils DIN 51524} \\ \text{Fluid viscosity} & 10 \div 500 \text{ mm}^2\text{/s} \\ \text{Fluid temperature} & -25^{\circ}\text{C} \div 75^{\circ}\text{C} \\ \text{Ambient temperature} & -25^{\circ}\text{C} \div 60^{\circ}\text{C} \\ \text{Max. contamination level} & \text{class 10 in accordance} \\ & & \text{with NAS 1638 with filter } \beta_{25} \ge 75 \\ \text{Weight} & 1,3 \text{ Kg} \\ \end{array}$ 

|                  | AM.66          |
|------------------|----------------|
| QC.3.2           | Ch. III page 2 |
| SCREWS AND STUDS | Ch. IV PAGE 21 |
|                  |                |





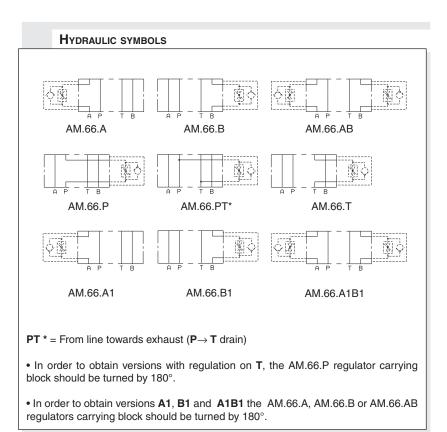
AM

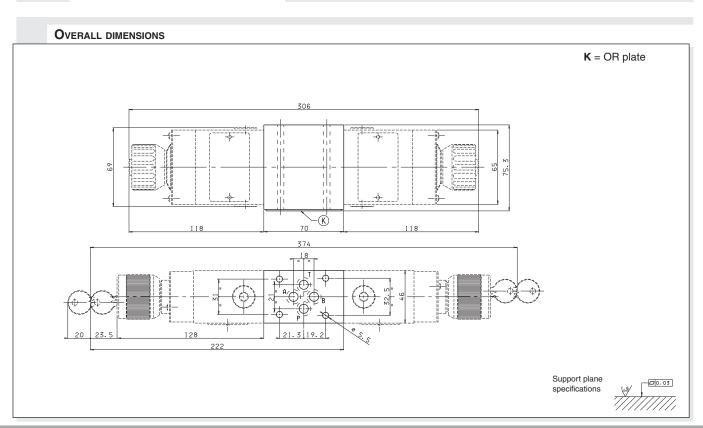
Modular valve

66

Size

\*\*


Control on lines
A/B/P/PT\*/AB
For T / A1 / B1 / A1B1 versions
see table "Hydraulic symbols"


\*\*

**00** = No variant **V1** = Viton

3

Serial No.







| A.66                |                |
|---------------------|----------------|
| DC coils            | Ch. I PAGE 68  |
| STANDARD CONNECTORS | Ch. I PAGE 20  |
| QC.3.2              | Ch. III PAGE 2 |
| SCREWS AND STUDS    | Ch. IV PAGE 21 |

## A.66... MODULAR FLOW CONTROL VALVES FAST / SLOW ASSEMBLY CETOP 3

This is modular assembly ON/OFF solenoid valve which, by fitting suitable 2 way regulator, allows two speed operation in the same system via an electrical changeover command.

The flow rate regulator type QC.3.2... must be ordered separately.

The operational limit curves have been obtained with the regulator fully closed, and those same limits improve gradually with the opening of the regulator.

| Max. operating pressure  | 320 bar                                 |
|--------------------------|-----------------------------------------|
| Hydraulic fluids         | Mineral oils DIN 51524                  |
| Fluid viscosity          | $10 \div 500 \text{ mm}^2/\text{s}$     |
| Fluid temperature        | -25°C ÷ 75°C                            |
| Ambient temperature      | -25°C ÷ 60°C                            |
| Max. contamination level | class 10 in accordance                  |
| with NA                  | AS 1638 with filter B <sub>25</sub> ≥75 |
| Weight                   | 2,4 Kg                                  |

খ্যদ brevini

The test have been carried out at operating temperature, with a voltage 10% lower than rated voltage and with a fluid temperature of 50 degrees C. The fluid used was a mineral based oil with a viscosity of 46 mm²/s at 40 degrees C.

### **O**RDERING CODE

(A)

Speed control valve

\_66\_)

Size

Electrical operator

\*\*\*

\*

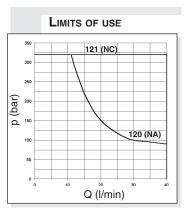
Ε

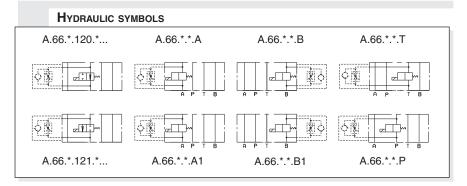
120 = Normally open

121 = Normally closed

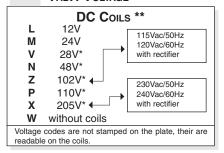
See table hydraulic symbols

Control on lines A/B/P/T (see symbols) The interface holder "H" must be turned by 180° in order to obtain the A1 and B1 versions.


\*


Voltage: see tab.1

\*\*


Variants: see tab.2

4 ) Serial No.

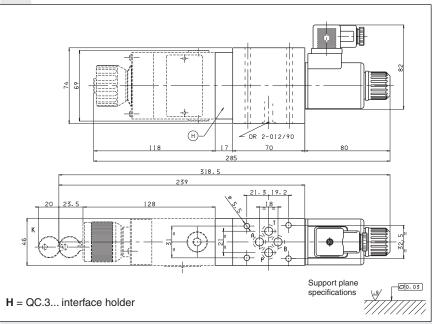




### TAB.1 VOLTAGE



- \* Special voltage
- \*\* Technical data see page XII 4


### Tab.2 - Variants

No variant (without connectors) S1(\*)
Viton SV(\*)

Other variants available on request

(\*) Coils with Hirschmann connection supplied without connectors. The connectors can be ordered separately, ch. I page 20.







### AM.3.RGT... MODULAR VALVES FOR REGENERATIVE CIRCUIT CETOP 3

খ্যদ brevini

This modular valve produces a regenerative system to increase the actuator (differential cylinder) exit speed as shown in the diagram.

In particular, if a cylinder is used with a 2:1 ratio for the operating surfaces, the exit and re-entry speeds are the same.

Max. operating pressure 350 bar Max. flow at port A/B/P/T 20 l/min Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity  $10 \div 500 \text{ mm}^2/\text{s}$ Fluid temperature -25°C ÷ 75°C -25°C ÷ 60°C Ambient temperature Max. contamination level class 10 in accordance with NAS 1638 with filter  $\beta_{25} \ge 75$  1,7 Kg Weight

#### AM.3.RGT...

SCREWS AND STUDS

Ch. IV PAGE 21

### **ORDERING CODE**

AM

Modular valve

3

CETOP 3/NG6

RGT

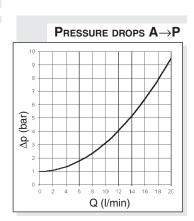
For regenerative circuit

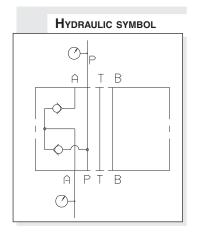
Α

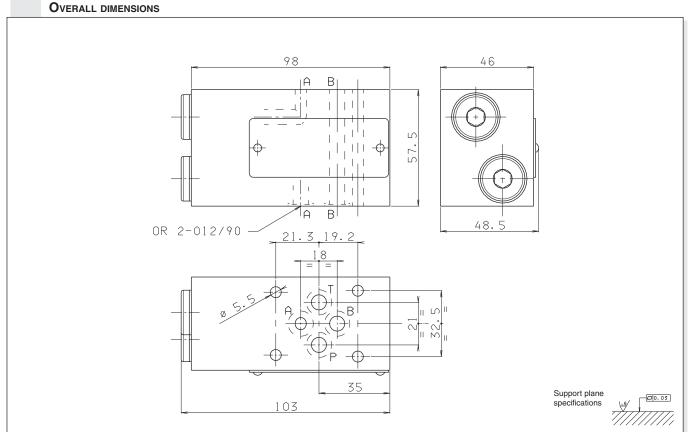
Size of check valves 3/8"BSP

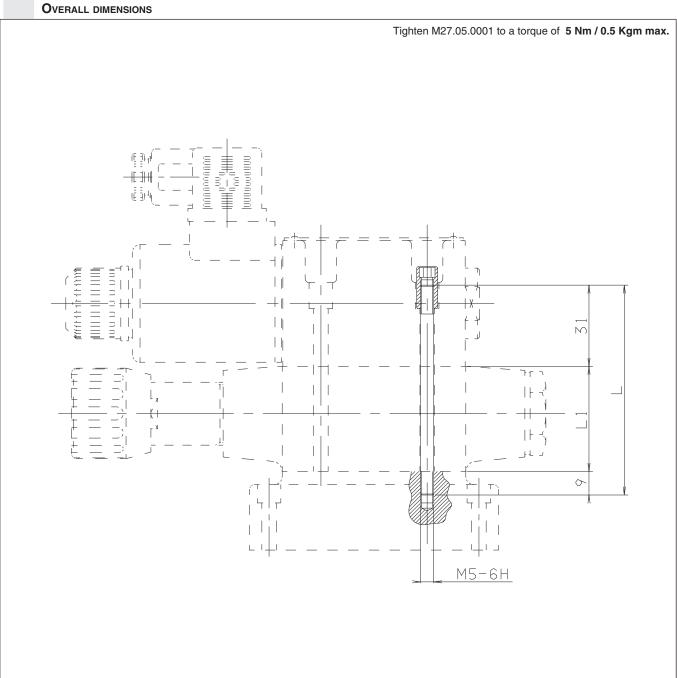
1

Opening pressure 1 bar


\*\*


**00** = No variant


V1 = Viton


1

Serial No.









| SCREWS T.C.E.I<br>CODE | <b>L</b><br>mm | <b>L1 *</b> mm | COMPOSITION                 | Q.TY                      | SPECIAL NUTS<br>CODE |
|------------------------|----------------|----------------|-----------------------------|---------------------------|----------------------|
| Q26074068              | 30             | _              | AD3                         | 4                         |                      |
| Q26074075              | 70             | 40             | AD3 + 1 AM3 (ISO)           | 4                         | _                    |
| Q26074076              | 75             | 45             | AD3 + AM3VR                 | 4                         |                      |
| M80100015              | 97             | 57,5           | AD3 + AM3VI                 | 4                         |                      |
| M80100007              | 115            | 74             | AD3 + A66 o AM66            | 4                         |                      |
| M80100003              | 120            | 80             | AD3 + 2 AM3 (ISO)           | 3 + 2 AM3 (ISO) 4         |                      |
| M80100013              | 125            | 85             | AD3 + AM3VR + AM3 (ISO)     | 4                         |                      |
| M80100011              | 155            | 114            | AD3 + A66 + AM3 (ISO)       | 4                         | V89240000            |
| M80100005              | 160            | 119            | AD3 + A66 + AM3VR           | D3 + A66 + AM3VR 4 (No. 2 |                      |
| M80100005              | 160            | 120            | AD3 + 3 AM3 (ISO)           | D3 + 3 AM3 (ISO) 4        |                      |
| M80100020              | 165            | 125            | AD3 + AM3VR + 2 AM3 (ISO) 4 |                           |                      |
| M80100017              | 170            | 130            | AD3 + AM3CP + 2 AM3 (ISO) 4 |                           |                      |
| M80100023              | 195            | 154            | A66 + 2 AM3 (ISO)           | 4                         |                      |

<sup>\*</sup> Indicative overall dimensions valves composition



### AM.5.UD..

SCREWS AND STUDS CH. IV PAGE 36

## AM.5.UD... MODULAR DIRECT CHECK VALVES CETOP 5

*₩ brevini* 

AM5UD type modular check valves allow free flow in one direction, while a conical seated poppet prevents flow in the opposite direction.

They are available on single A, B, P and T lines, and on double A and B, P and T lines (see hydraulic symbols).

1 bar springs are standard, while 5 bar rated springs are available on request.

Max. operating pressure 350 bar Minimum opening pressure spring 1 1 bar Minimum opening pressure spring 5 5 bar Max. flow 80 l/min Hydraulic fluids Mineral oils DIN 51524 10 ÷ 500 mm<sup>2</sup>/s Fluid viscosity -25°C ÷ 75°C Fluid temperature Ambient temperature -25°C ÷ 60°C Max. contamination level class 10 in accordance with NAS 1638 with filter B<sub>as</sub>≥75

ORDERING CODE

AM

5

UD

\*\*

\*\*

2

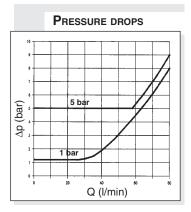
Modular valve

CETOP 5/NG10

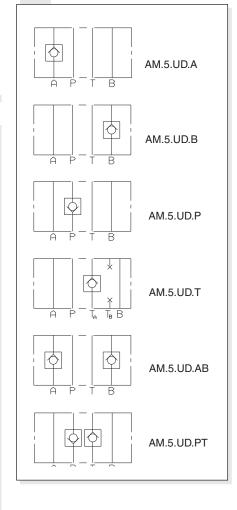
Direct check valve

Control on lines
A/B/P/T/AB/PT

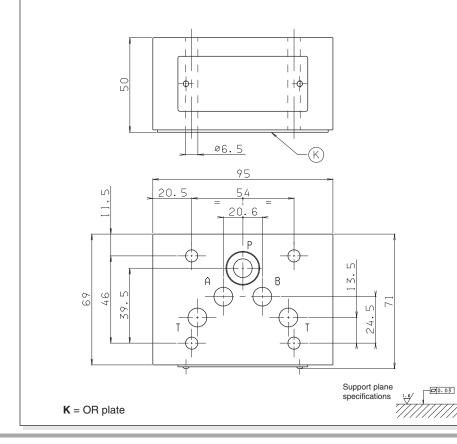
Minimum opening pressure


Weight

1 = 1 bar5 = 5 bar


**00** = No variant

V1 = Viton


Serial No.



### HYDRAULIC SYMBOLS



### **O**VERALL DIMENSIONS





### AM.5.UP..

SCREWS AND STUDS

CH. IV PAGE 36

### AM.5.UP... MODULAR

### PILOT OPERATED CHECK VALVES CETOP 5

AM5UP type modular check valves allow free flow in one direction by lifting a conical steel seated poppet, while in the opposite direction the fluid can return by means of a small piston piloted by the other line pressure (piloted side).

The cast valve body allows limited pressure drops during the fluid flow through the various P/A/B/T lines.

They are available on single A or B lines, and on double A and B lines (see hydraulic symbols).

Max. operating pressure 280 bar Minimum opening pressure spring 1 1 bar Minimum opening pressure spring 5 5 bar Piloting ratio 1:14,3 Max. flow 80 l/min Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity 10 ÷ 500 mm<sup>2</sup>/s Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C Max. contamination level class 10 in accordance with NAS 1638 with filter B<sub>as</sub>≥75 Weight 2,7 Kg

খ্যদ brevini

### **O**RDERING CODE

AM

Modular valve

5

CETOP 5/NG10

UP

Piloted check valve

\*\*

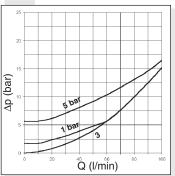
Control on lines

A /B/AB

Minimum opening pressure

1 = 1 bar

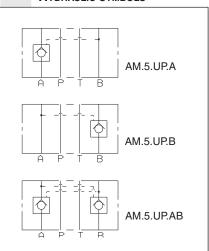
5 = 5 bar

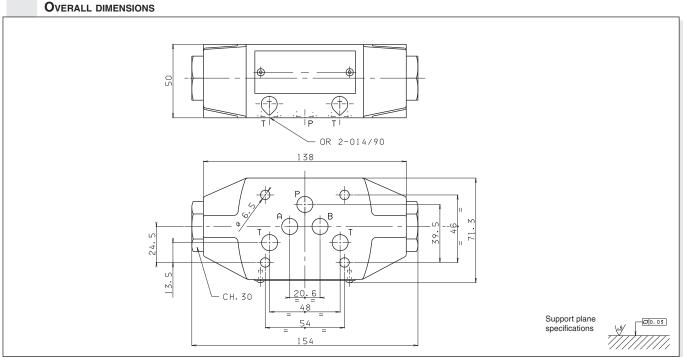

\*\*

00 = No variant

V1 = Viton

5 Serial No.


### PRESSURE DROPS




Curve n. 3 = Piloted side flow

The fluid used is a mineral oil with a viscosity of 46 mm<sup>2</sup>/s at 40°C. The tests have been carried out a fluid temperature of 50°C.

### HYDRAULIC SYMBOLS







| AM.5.VM       | / AM 5 VI     |
|---------------|---------------|
| AIVI.D. V IVI | / AIVI.3. V I |

| CMP.20 | BFP CARTRIDGE CATALOGUE |
|--------|-------------------------|
| CMP.30 | BFP CARTRIDGE CATALOGUE |

CH. IV PAGE 36 SCREWS AND STUDS

### **O**RDERING CODE

ΑM

Modular valve



CETOP 5/NG10



VM = Maximum pressure VI = Maximum crossline relief



Adjustment on the lines

AM.5.VM Version = A / B / P / AB AM.5.VI Version = A / B / AB

Type of adjustment

M = Plastic knob

C = Grub screw

Setting ranges at port A/B/P

CMP 30 CMP 20

(AM.5.VM only) (AM.5.VI only) 1 = max. 50 bar 1 = max. 50 bar

(white spring) 2 = max. 140 bar 2 = max. 140 bar (yellow spring)

3 = max. 350 bar 3 = max. 250 bar (green spring)

\*

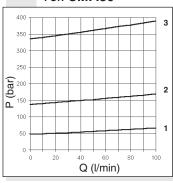
Setting ranges at port B

Omit if the setting is same as that at port A

CMP 20 CMP 30 (AM.5.VM only) (AM.5.VI only)

1 = max.50 bar 1 = max.50 bar (white spring) 2 = max. 140 bar 2 = max. 140 bar (yellow spring)

3 = max. 350 bar 3 = max. 250 bar (green spring)


\*\*

00 = No variant V1 = Viton

3

Serial No.

### PRESSURE - FLOW BATE FOR CMP.30



### MINIMUM SETTING PRESSURE FOR CMP.30

AM.5.VM type pressure regulating

valves are available within operating

range 7 ÷ 350 bar. Adjustment is by

means of a grub screw or a plastic

knob. They are three basic versions:

AM.5.VM, on single A or B lines, and

on double A and B lines, with drainage

on T; AM.5.VM.P, on single P line, with

drainage on T; AM.5.VI, on single A or

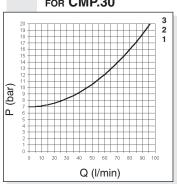
B lines, and on double A and B lines,

with crossed drainage on either A or B

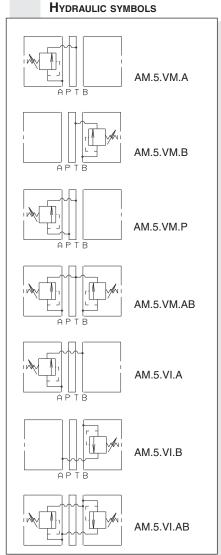
(see hydraulic symbols). Three spring

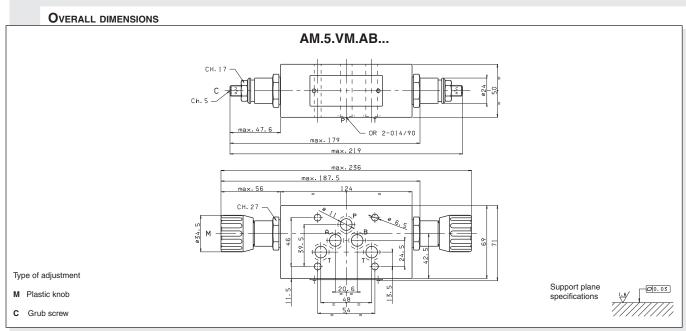
types can be fitted on all versions, with

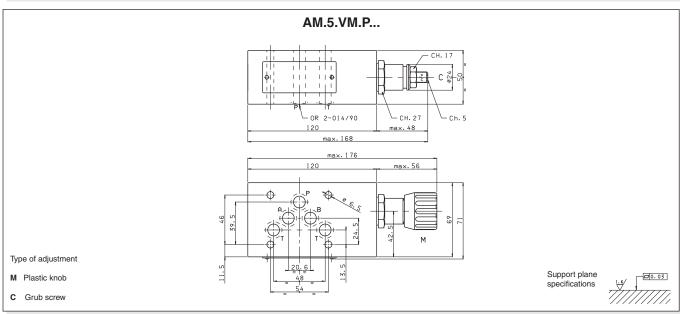
calibrated ranges as shown in the unit

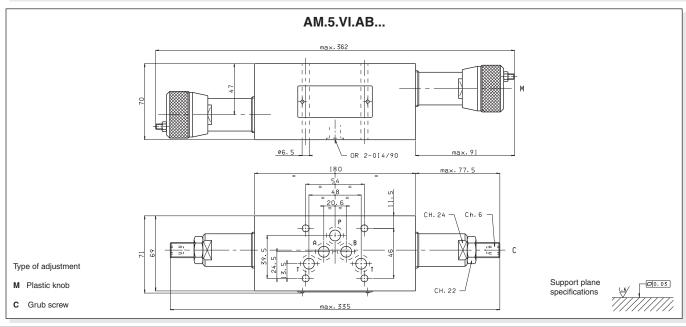

Piloted operation cartridge type CMP.30 is used on versions AM.5.VM and AM.5.VM.P (see ordering code), while on version AM.5.VI direct acting cartridge type CMP.20 is used instead.

For the minimum permissible setting pressure depending on the


spring, see the minimum pressure


specifications.


setting curve.




350 bar Max. operating pressure Setting ranges: spring 1 50 bar 140 bar spring 2 spring 3 350 bar 80 l/min Max. flow Hvdraulic fluids Mineral oils DIN 51524 Fluid viscosity  $10 \div 500 \text{ mm}^2/\text{s}$ Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C Max. contamination level class 10 in accordance with NAS 1638 with filter  $\beta_{25} \ge 75$ Weight AM.5.VM.A/B/P... 2,5 Kg Weight AM.5.VM.AB... 2,7 Kg Weight AM.5.VI.A/B... 5,7 Kg Weight AM.5.VI.AB... 5,9 Kg











| AM.5.CP. |  |
|----------|--|
|----------|--|

CMP.20... BFP CARTRIDGE CATALOGUE

SCREWS AND STUDS CH. IV PAGE 36

### AM.5.CP... MODULAR BACK PRESSURE VALVES CETOP 5

Back pressure valves type AM.5.CP are direct acting damped maximum pressure in-line valves fitted with bypass non-return valves. They are obtainable within the adjustable range 2 ÷ 250 bar.

Adjustment is by means of a grub screw or a plastic knob, on ports A or B (single), or on AB double.

The cartridge is direct acting type CMP.20.

These valves are especially used on vertical working cylinders with dragging loads.

For the minimum permissible setting pressure depending on the spring, see the minimum pressure setting curve

350 bar Max. operating pressure Setting ranges: spring 1 30 bar 140 bar spring 2 spring 3 250 bar Max. flow 80 l/min Mineral oils DIN 51524 Hydraulic fluids Fluid viscosity  $10 \div 500 \text{ mm}^2/\text{s}$ Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C class 10 in accordance Max. contamination level with NAS 1638 with filter  $\beta_{25} \ge 75$ Weight AM.5.CP.A/B... 5,3 Kg Weight AM.5.CP.AB... 7,2 Kg

### **ORDERING CODE**

AM

Modular valve



CETOP 5/NG10



Back pressure valve



Control on lines A / B / AB



Type of adjustment M = Plastic knob

C = Grub screw



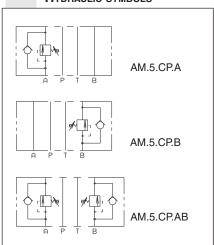
Setting ranges

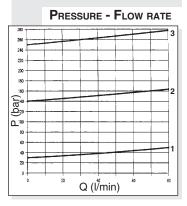
1 = max. 30 bar (white spring)

2 = max. 140 bar (yellow spring)

3 = max. 250 bar (green spring)

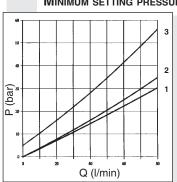
3


\*\*

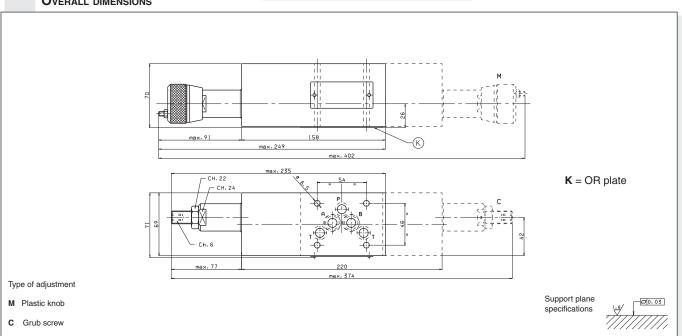

00 = No variant

V1 = Viton

Serial No.


### **HYDRAULIC SYMBOLS**






Curves n° 1 - 2 - 3 = setting ranges

### MINIMUM SETTING PRESSURE



### **OVERALL DIMENSIONS**





| M. |  |  |
|----|--|--|
|    |  |  |
|    |  |  |

CVR.20... BFP CARTRIDGE CATALOGUE

SCREWS AND STUDS CH. IV PAGE 36

### AM.5.VR... MODULAR PRESSURE REDUCING VALVES WITH RELIEVING - PILOT OPERATED CETOP 5 এন brevini

These pressure reducing valves ensure a minimum pressure variation on the P or A port with changing flow rate up 90 l/min.

Three spring types allow adjustment with the range  $7 \div 250$  bar.

Manual adjustment is available by a grub screw or plastic knob.

The RELIEVING SYSTEM inside the valve AM.5.VR allows the passage from the setting pressure line to T line of the flow through the valve to avoid the increasing of pressure in the reduced-pressure line by diverting exceeding flow to reservoir.

A by pass module with check valve for free flow from A to AR port (see hydraulic symbol) is available.

**HYDRAULIC SYMBOLS** 

350 bar Max. operating pressure Setting ranges: spring 1 60 bar

120 bar spring 2 spring 3 250 bar

Maximum allowed ∆p pressure

between the inlet and outlet pressure 150 bar Max. flow 90 l/min Draining on port T 0.5 ÷ 0.7 l/min Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity 10 ÷ 500 mm<sup>2</sup>/s Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C Max. contamination level class 10 in accordance

with NAS 1638 with filter B<sub>25</sub>≥75

3,73 Kg Weight Weight by-pass version 6,56 Kg

### ORDERING CODE

AM

Modular valve

5

CETOP 5/NG10

۷R

Pilot operated pressure reducing valve with relieving

Control on lines

P = Drain on T A = Drain on T

**D** = Drain on B reduct pressure on A

Drain connection

**E** = External (only for control on the P line)

I = Internal (Standard)

В

Version with by-pass on line A only

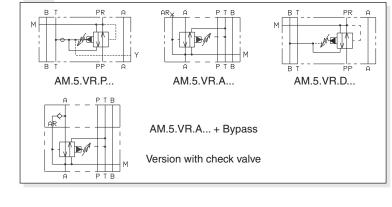
Omit if not required

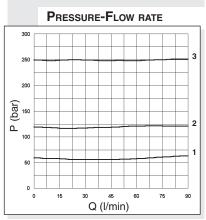
Type of adjustment

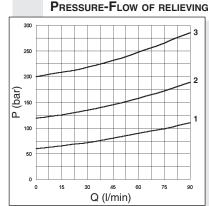
M = Plastic knob

C = Grub screw

Setting ranges


1 = max. 60 bar (white spring) 2 = max. 120 bar (yellow spring)


3 = max. 250 bar (green spring)


00 = No variant

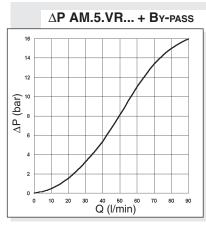
V1 = Viton

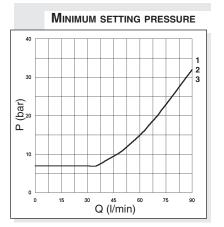
1 Serial No.








To change valves AM.5.VR.P... from internal to external drainage it is necessary:


- screw out the plug on the Y port
- screw out the plug T.C.E.I. M8x1 from the body
- screw in a screw S.T.E.I. M6
- rescrew the T.C.E.I. M8x1 plug on the body

NOTE: the external draining can be used as a piloting line (please, concta our Technical Service for other informations)

Curves n° 1 - 2 - 3 = setting ranges

The fluid used is a mineral oil with a viscosity of 46 mm<sup>2</sup>/s at 40°C. The tests have been carried out at a fluid temperature of 50°C.





### **OVERALL DIMENSIONS** AM.5.VR.P... / AM.5.VR.D... ma× 197 60 CH 17 CH 24 OR 2-014/90 131 ma× 61.5 20.6 max 70 48 AM.5.VR.A... + BYPASS max 197 B By-pass (optional) Ordering code: by-pass (opzionale) V89.46.0000 (if ordered separately) 20 CH 24 м 09 CH 5 CH 17 OR 2-014/90 4.5 max 61.5 131 94 ma× 70 20.6 Type of adjustment 48 Support plane M Plastic knob

C Grub screw

specifications



### AM.5.VS..

CVS.20... BFP CARTRIDGE CATALOGUE
SCREWS AND STUDS CH. IV PAGE 36

### AM.5.VS... MODULAR PRESSURE SEQUENCING VALVES CETOP 5

The sequence valve are used to assure that a secondary circuit is pressurized when the setting pressure with a changing flow to up 90 l/min (see diagram).

Three spring types allow adjustment within the range  $7 \div 250$  bar. Manual adjustment is available by a grub screw or plastic knob.

The cartridge used is the "CVS" type.

# ## brevini

350 bar Max. operating pressure Setting ranges: spring 1 60 bar spring 2 120 bar spring 3 250 bar Max. flow 90 l/min Draining on port T  $0.5 \div 0.7 \text{ l/min}$ Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity 10 ÷ 500 mm<sup>2</sup>/s Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C Max. contamination level class 10 in accordance with NAS 1638 with filter B<sub>25</sub>≥75 Weight 3,73 Kg

### **ORDERING CODE**

AM

Modular valve

5

CETOP 5/NG10

VS

Sequencing valve

\*

Drain connection

 $\mathbf{E} = \text{External}$ 

I = Internal (Standard)

\*

Type of adjustment

M = Plastic knob

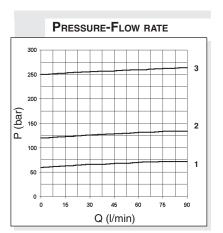
C = Grub screw

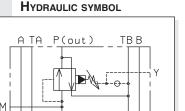
\*

Setting ranges

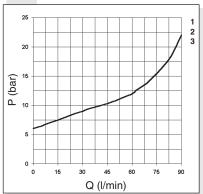
1 = max. 60 bar (white spring)

2 = max. 120 bar (yellow spring)


3 = max. 250 bar (green spring)


\*\*

**00** = No variant


V1 = Viton

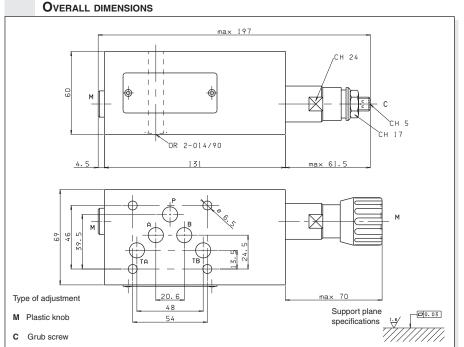
1 Serial No.





### MINIMUM SETTING PRESSURE




Curves n° 1 - 2 - 3 = setting ranges

The fluid used is a mineral oil with a viscosity of 46 mm<sup>2</sup>/s at 40°C. The tests have been carried out a fluid temperature of 50°C.

To change valves AM.5.VS... from internal to external drainage it is necessary:

- screw out the plug on the Y port
- screwout the plug T.C.E.I. M8x1 from the body
- screw in a screw S.T.E.I. M6
- rescrew the T.C.E.I. M8x1 plug on the body

NOTE: the external draining can be used as a piloting line (please, contact our Technical Service for other informations)



### AM.5.SH...

SH.03... BFP CARTRIDGE CATALOGUE SCREWS AND STUDS

CH. IV PAGE 36

### AM.5.SH... MODULAR SHUTTLE VALVES CETOP 5

খ্যদ brevini

20÷30 Nm/2÷3 Kgm

Modular valves type AM.5.SH are actuator load pressure selecting units, as they are fitted with an integral shuttle valve cartridge which allows taking of the highest pressure signal to the external port via displacement of a ball. They are usually employed to signal the actuator load to the pressure compensator of a load sensing pump, or for the command of fail-safe brakes. For seat overall dimensions see cartridge shuttle type SH.03.

Max. operating pressure 350 bar Max. flow at the cartridge 3 l/min Max. flow at ports A/B/P/T 80 l/min Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity 10 ÷ 500 mm<sup>2</sup>/s -25°C ÷ 75°C Fluid temperature Ambient temperature -25°C ÷ 60°C Max. contamination level class 10 in accordance with NAS 1638 with filter  $\rm \beta_{25}{\ge}75$  2,1 Kg Weiaht

Cartridge tightening torque

### **ORDERING CODE**

AM

Modular valve

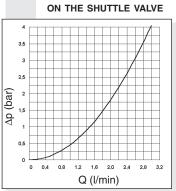
5

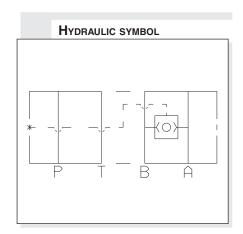
CETOP 5/NG10

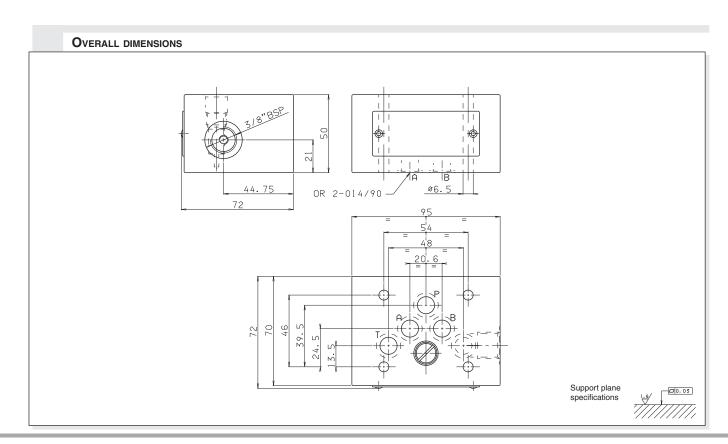
SH

Cartridge shuttle

\*\*


1


00 = No variant


V1 = Viton

Serial No.

# PRESSURE DROPS ( $\Delta P$ )











#### AM.5.QF...

SCREWS AND STUDS

CH. IV PAGE 36

# AM.5.QF... MODULAR FLOW REGULATOR CETOP 5

এদ brevini

AM.5.QF type one way non-compensated throttle valve are fitted with an O-Ring mounting plate which allows its assembly for either input or output regulation. Adjustment is obtained by means of a grub screw or a plastic knob. They are available in the four regulating configurations shown in the hydraulic diagrams.

These valves are supplied with related hydraulic scheme. In case of inversion of rated flow direction, turn valve 180° right or left (attention: in this case the label will appear upside down with A and B inverted).

350 bar Max. operating pressure Flow rate regulation on 9 screw turns Max. flow 100 l/min Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity  $10 \div 500 \text{ mm}^2/\text{s}$ -25°C ÷ 75°C Fluid temperature Ambient temperature -25°C ÷ 60°C Max. contamination level class 10 in accordance with NAS 1638 with filter B<sub>as</sub>≥75 3,5 Kg Weight

### **O**RDERING CODE

AM

Modular valve

5

CETOP 5/NG10

QF

Non compensated throttle valve

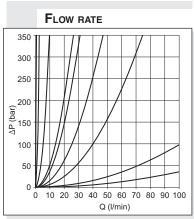
\*\*

Control on lines A / B / P / AB

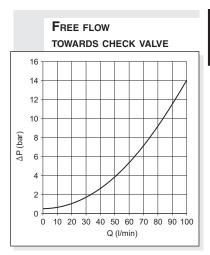
\*

Type of adjustment

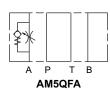
M = Plastic knob

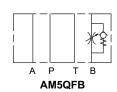

**C** = Grub screw

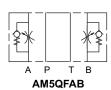
\*\*

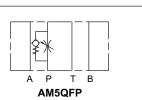

00 = No variant

V1 = Viton


5 Serial No.



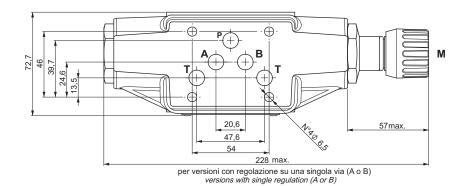


Each curve represents the flow rate adjustment for each screw turns, starting from the closed position.



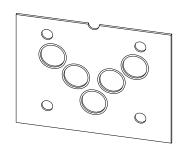

### HYDRAULIC SYMBOLS







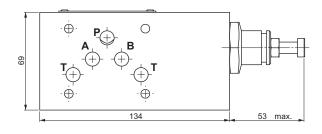


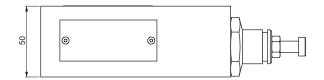


### **O**VERALL DIMENSIONS

# AM.5.QF. / A / B / AB Ch./Wr. 13 Ch./Wr. 6 Ch./Wr. 14 Ch./Wr. 14

per versioni con regolazione su due vie (AB) versions with double regulation (AB)




**K** = OR plate




Type of adjustment

- M Plastic knob
- C Grub screw

### AM.5.QF. / P





Support plane specifications





## AM.88... MODULAR COMPENSATED FLOW CONTROL ASSEMBLY CETOP 5

খ্যদ brevini

This is an intermediate block (AM.88) for modular mounting of one or two compensated flow rate regulators QC.3...

The flow regulator type QC32 must be ordered separately.

 $\begin{array}{cccc} \text{Max. operating pressure} & 320 \text{ bar} \\ \text{Hydraulic fluids} & \text{Mineral oils DIN 51524} \\ \text{Fluid viscosity} & 10 \div 500 \text{ mm}^2\text{/s} \\ \text{Fluid temperature} & -25^{\circ}\text{C} \div 75^{\circ}\text{C} \\ \text{Ambient temperature} & -25^{\circ}\text{C} \div 60^{\circ}\text{C} \\ \text{Max. contamination level} & \text{class 10 in accordance} \\ & & \text{with NAS 1638 with filter } \beta_{25} \ge 75 \\ \text{Weight} & 2,75 \text{ Kg} \\ \end{array}$ 

| AM.88            | 8              |
|------------------|----------------|
| QC.3.2           | Ch. III page 2 |
| SCREWS AND STUDS | CH. IV PAGE 36 |
|                  |                |
|                  |                |
|                  |                |
|                  |                |

### **O**RDERING CODE

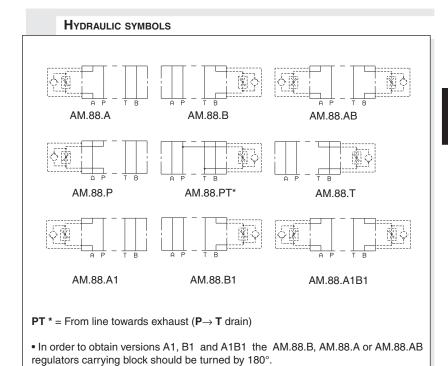
AM

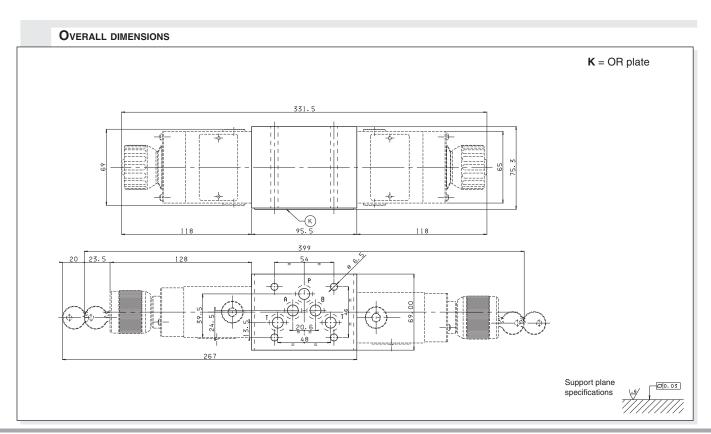
Modular valve

88

Size

\*\*


Control on lines
A / B / P / T / PT\* / AB
For A1 / B1 / A1B1
see table "Hydraulic symbols"


\*\*

**00** = No variant **V1** = Viton

3

Serial No.







| A.88                         |                |  |  |  |  |
|------------------------------|----------------|--|--|--|--|
| "A16" DC coils               | CH. I PAGE 36  |  |  |  |  |
| STANDARD CONNECTORS          | Ch. I PAGE 20  |  |  |  |  |
| QC.3.2                       | Ch. III page 2 |  |  |  |  |
| SCREWS AND STUDS CH. IV PAGE |                |  |  |  |  |

## A.88... MODULAR FLOW CONTROL VALVES FAST / SLOW ASSEMBLY CETOP 5

খ্যান brevini

This is a modular assembly ON/OFF solenoid valve which, by fitting a suitable 2 way regulator, allows two speed operation in the same system via an electrical changeover command.

The flow rate regulator type QC.3.2 must be ordered separately.

The limit of use curves have been obtained with the regulator fully closed, and those same limits improve gradually with the opening of the regulator.

 Solenoids used are standard type A16 for DC voltage. The test have been carried out at operating temperature, with a voltage 10% lower than rated voltage and with a fluid temperature of 50 degrees C. The fluid used was a mineral based oil with a viscosity of 46 mm<sup>2</sup>/sec at 40 degrees C.

### ORDERING CODE



Speed control valve



Size

Electrical operator

\*\*\*

Ε

120 = Normally open 121 = Normally closed

See table "Hydraulic symbols"

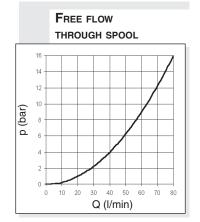
\*

Control on lines A/B/P/T (see symbols)

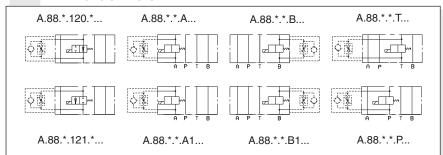
The interface holder "H" must be turned by 180° in order to obtain the **A1** and **B1** versions.



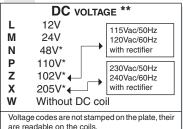
Voltage: see tab.1


\*\*

Variants: see tab.2


3

Serial No.


# LIMITS OF USE DC SOLENOID

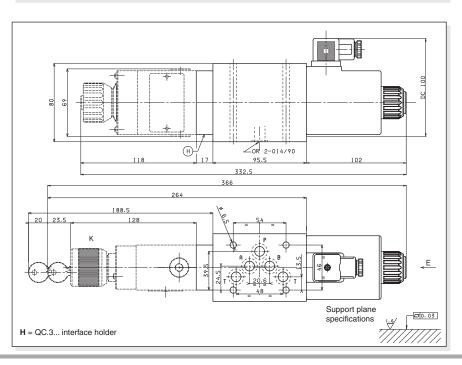


### HYDRAULIC SYMBOLS



### TAB.1 - A16 COIL




\* Special voltage

### TAB.2 - VARIANTS

No variant (without connectors) S1(\*)
Viton SV(\*)

Other variants available on request

(\*) Coils with Hirschmann connection supplied without connectors. The connectors can be ordered separately, ch. I page 20.



<sup>\*\*</sup> Technical data see page XII • 8



#### AM.5.RGT...

SCREWS AND STUDS

CH. IV PAGE 36

### AM.5.RGT... MODULAR VALVES FOR REGENERATIVE CIRCUIT CETOP 5

This modular system produces a regenerative circuit to increasing the actuator (differential cylinder) exit speed as shown in the diagram. In particular, if a cylinder is used with a 2:1 ratio for operating surfaces, the

exit and re-entry speeds are the same.

Max. operating pressure 350 bar Max. flow at port A/B/P/T 70 l/min Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity  $10 \div 500 \text{ mm}^2/\text{s}$ Fluid temperature -25°C ÷ 75°C -25°C ÷ 60°C Ambient temperature Max. contamination level class 10 in accordance with NAS 1638 with filter β<sub>25</sub>≥75 Weight 2,1 Kg

খ্যদ brevini

### **O**RDERING CODE

AM

Modular valve

5

CETOP 5/NG10

RGT

For regenerative circuit

Α

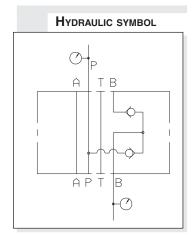
Size of check valves 1/2"BSP

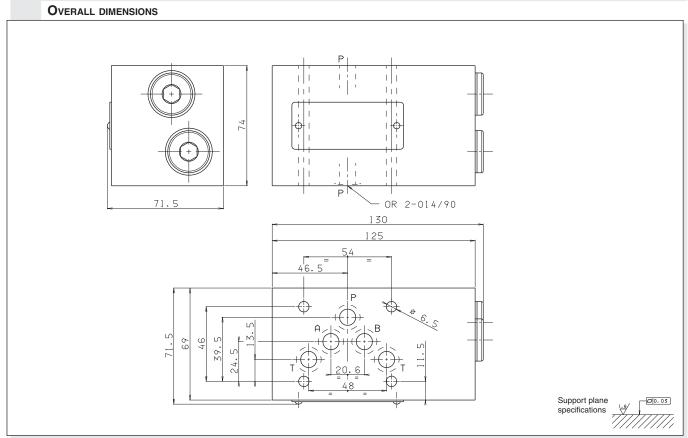
1

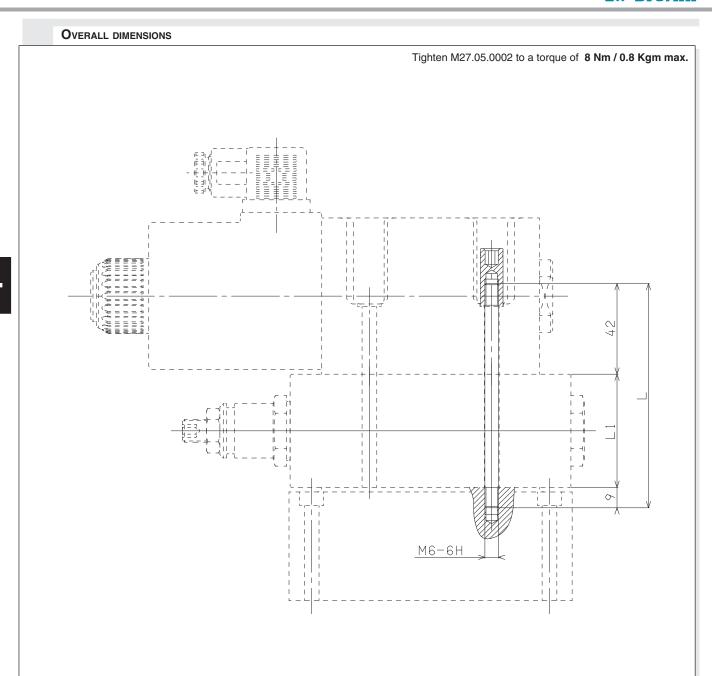
Opening pressure

1 bar

\*\*


1


00 = No variant


V1 = Viton

Serial No.

# PRESSURE DROPS $B \rightarrow P$ 20 18 Q (I/min)







| SCREWS T.C.E.I<br>CODE | <b>L</b><br>mm | <b>L1 *</b> mm | COMPOSITION             | Q.TY | SPECIAL NUTS<br>CODE           |
|------------------------|----------------|----------------|-------------------------|------|--------------------------------|
| Q26074090              | 40             | _              | AD5                     | 4    |                                |
| Q26074098              | 90             | 50             | AD5 + 1 AM5 (ISO)       | 4    |                                |
| Q26074301              | 100            | 60             | AD5 + AM5VR             | 4    | _                              |
| Q26074302              | 110            | 70             | AD5 + AM5VI             | 4    |                                |
| Q26074099              | 120            | 80             | AD5 + A88               | 4    |                                |
| M80150004              | 150            | 100            | AD5 + 2 AM5 (ISO)       | 4    |                                |
| M80150012              | 160            | 110            | AD5 + AM5VR + AM5 (ISO) | 4    | \/0005000                      |
| M80150010              | 180            | 130            | AD5 + A88 + AM5 (ISO)   | 4    | V89250000<br>(No. 20 nuts kit) |
| M80150006              | 190            | 140            | AD5 + A88 + AM5VR       | 4    | (140. 20 Huts Kit)             |
| M80150011              | 200            | 150            | AD5 + 3 AM5 (ISO)       | 4    |                                |

<sup>\*</sup> Indicative overall dimensions valves composition



### AM.7.UP...

### AM.7.UP... MODULAR

### PILOT OPERATED CHECK VALVES CETOP 7

খাদ brevini

AM.7.UP.B

 $\Diamond$ 

AM.7.UP type modular check valves allow free flow in one direction by lifting a seated poppet, while in the opposite direction the fluid can return by means of a small piston piloted by the other line pressure (piloted side).

The cast valve body allows limited pressure drops during the fluid flow through the various P/A/B/T lines.

They are available on single A or B lines, and on double A and B lines (see hydraulic symbols).

| Max. operating pressure  | 350 bar                                 |
|--------------------------|-----------------------------------------|
| Opening pressure         | 2 bar                                   |
| Piloting ratio           | 1:11,7                                  |
| Max. flow                | 250 l/min                               |
| Hydraulic fluids         | Mineral oils DIN 51524                  |
| Fluid viscosity          | 10 ÷ 500 mm <sup>2</sup> /s             |
| Fluid temperature        | -20°C ÷ 80°C                            |
| Ambient temperature      | -20°C ÷ 50°C                            |
| Max. contamination level | class 10 in accordance                  |
| with NA                  | AS 1638 with filter B <sub>25</sub> ≥75 |
| Weight                   | 7,2 Kg                                  |

AM.7.UP.AB

A1 P1

**\( \)** 

T1 B1

### **O**RDERING CODE

AM

Modular valve

7

CETOP 7/NG16

UP

Piloted check valve

\*\*

Control on lines

A /B/AB

\*

Opening pressure

2 = 2 bar

( \*\* )

00 = No variant

V1 = Viton

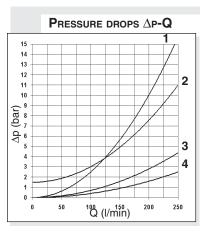
1 Serial No.

The fluid used is a mineral oil with a viscosity of 46 mm²/s at 40°C. The tests have been carried out a fluid temperature of 50°C.

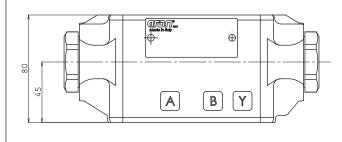
T1 B1

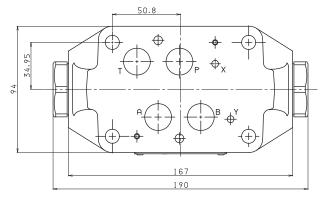
AM.7.UP.A

HYDRAULIC SYMBOLS


$$\mathbf{1} = A1 \rightarrow A \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$B1 \rightarrow B \qquad \qquad \downarrow$$


$$\mathbf{2} = A \rightarrow A1 \qquad \qquad \downarrow \qquad \downarrow \\ B \rightarrow B1 \qquad \qquad \downarrow \qquad \downarrow$$


 $3 = A1 \rightarrow A (AM.7.UP.B)$ B1\times B (AM.7.UP.A)

 $4 = P1 \rightarrow T$  $T1 \rightarrow P$ 

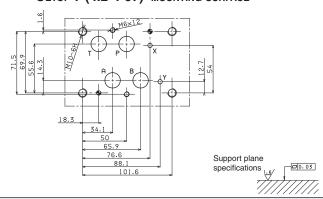


### OVERALL DIMENSIONS





Valve fixing:


n° 4 screws T.C.E.I. M10 - Tightening torque 40 Nm n° 2 screws T.C.E.I. M6 - Tightening torque 8 Nm The longer of the screws depends on the type of assembly used.

The longer of the screws depends on the type of assembly us Fixing screws UNI 5931 with material specifications 12.9

• Seals:

n° 4 pieces OR 2-118/90sH PARKER (type 130) n° 2 pieces OR 2-013/90sH PARKER (type 2043)

### CETOP 7 (4.2-4-07) MOUNTING SURFACE





### AM.7.QF..

## AM.7.QF... MODULAR FLOW REGULATOR CETOP 7

খ্যদ brevini

7,7 Kg

AM.7.QF.AB

A1 P1T1 B

AM.7.QF type one way noncompensated throttle valve. Adjustment is obtained by means of a grub screw. They are available in the three regulating configurations shown in the hydraulic diagrams.

All configurations have a built in check valve that allows reserve free flow.

HYDRAULIC SYMBOLS

AM.7.QF.A

APTB

A1 P1T1 B1

Max. operating pressure 350 bar Flow rate regulation on 10 screw turns Max. flow 250 l/min Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity  $10 \div 500 \text{ mm}^2/\text{s}$ -20°C ÷ 80°C Fluid temperature Ambient temperature -20°C ÷ 50°C Max. contamination level class 10 in accordance with NAS 1638 with filter B<sub>26</sub>≥75 Weight AM.7.QF for A or B versions 7,35 Kg

Weight AM.7.QF for AB version

AM.7.QF.B

APTR

A1 P1T1 B1

### **ORDERING CODE**

AM

Modular valve

7

CETOP 7/NG16

QF

Non compensated throttle valve

\*\*

Control on lines

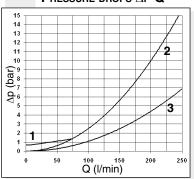
A = meter out control on line A

AB = meter out control on lines A and B

B = meter out control on line B

\*

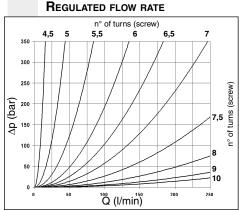
Type of adjustment **M** = Plastic knob


C = Grub screw

\*\*

**00** = No variant **V1** = Viton

Serial No.

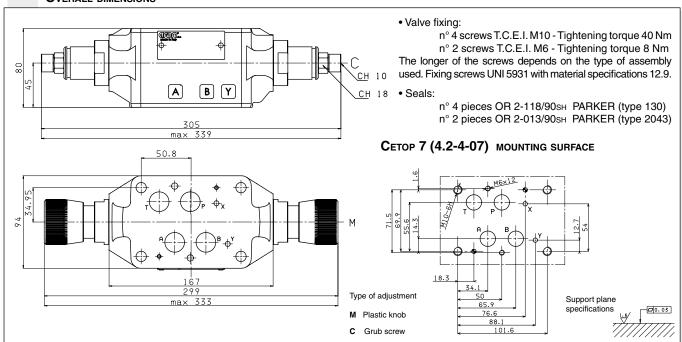

Pressure drops  $\Delta P$ -Q



**1** = Regulator closed A→A1 / B→B1

**2** = Regulator open  $A \rightarrow A1 / B \rightarrow B1$ 

**3** = Without regulator  $A\rightarrow A1$  (AM.7.QF.B)  $B\rightarrow B1$  (AM.7.QF.A)




Regulated flow rate depending on No. of turns: from **4,5** to **10** turns (unscrewing).

### OVERALL DIMENSIONS

carried out a fluid temperature of 50°C.

The fluid used is a mineral oil with a viscosity of 46 mm²/s at 40°C. The tests have been



#### **A**BBREVIATIONS AP HIGH PRESSURE CONNECTION AS Phase Lag (DEGREES) BP Low pressure connection С STROKE (MM) CH ACROSS FLATS Сн INTERNAL ACROSS FLATS DA AMPLITUDE DECAY (DB) DΡ DIFFERENTIAL PRESSURE (BAR) F FORCE (N) **l**% INPUT CURRENT (A) M MANOMETER CONNECTION NG KNOB TURNS OR SEAL RING LOAD PRESSURE (BAR) **PARBAK** PARBAK RING PL Parallel connection $\mathbf{P}_{\mathsf{R}}$ REDUCED PRESSURE (BAR) Q FLOW (L/MIN) QP PUMP FLOW (L/MIN) ELASTIC PIN SE SF Ball SR SERIES CONNECTION X **PILOTING** Υ DRAINAGE

### CARTRIDGE VALVES ISO 7368 (DIN 24342)



| 2/2 CARTRIDGE VALVES          | Ch. V PAGE 2  |
|-------------------------------|---------------|
| 2/2 LOGIC ELEMENTS            | CH. V PAGE 3  |
| COVERS FOR LOGIC ELEMENTS     | Ch. V PAGE 3  |
| Max. Pressure valves - Covers | Ch. V PAGE 9  |
| PLATE MOUNTING COVERS         | Ch. V PAGE 9  |
| KRA.16/25                     | Ch. V PAGE 12 |
| PROXIMITY                     | Ch. V PAGE 15 |
|                               |               |

CARTRIDGE VALVES
CARTRIDGE SOLENOID VALVES
CARTRIDGE SOLENOID VALVES

SEE ALSO CATALOGUE CODE DOC00044

File: 05TA E V • 1 07/2011/e



### 2/2 LOGIC ELEMENTS AND COVERS

| KEL.16/25                 | Ch. V PAGE 3       |
|---------------------------|--------------------|
| KEC.16/25                 | CH. V PAGE 3/6/7/8 |
| HYDRAULIC MOUNTING SCHEME | S Ch. V PAGE 4     |
| NG16/NG25 SEATS           | Ch. V PAGE 5       |
| KEC.16/25 WITH CMP        | CH. V PAGE 9/10    |
| C.*.P.16/25               | CH. V PAGE 9/11    |
| KRA.16/25                 | Ch. V PAGE 12      |
| KRA.16/25 + AD.3.V        | Ch. V page 14      |
| PROXIMITY FOR KRA         | Ch. V page 15      |

# 2/2 CARTRIDGE VALVES LOGIC ELEMENTS ACCORDING TO ISO 7368 (DIN 24342)

খদ brevini

ARON cartridge valves are basically composed of a cover and an operating unit insert in the ISO 7368 (DIN 24342) mounting frame. Each cartridge valve is characterized by 2 main way for the nominal flow (up to 350 l/min).

By combining the various covers,

operating units and connections within the block, many different functions can be obtained like: direct control, non-return, hydraulically piloted non-return, pressure control, flow rate regulation, as well as a combination of these same functions.

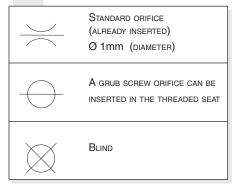
Thanks to their design features and operational flexibility, cartridge valves can be used to:

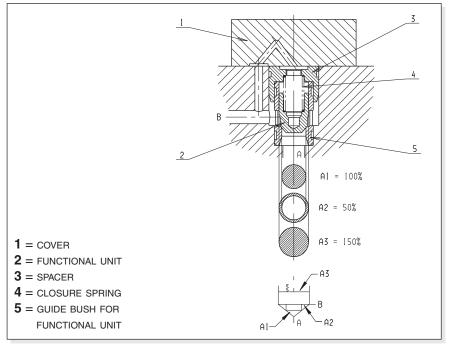
- speed-up machine cycles, and therefore increase productivity and efficiency (better response time compared to traditional valves);
- ensure minimum thermal dissipation (tanks to the passageway dimensions);
- reduce the hydraulic plant weight (tanks to the compact functions block);
- reduce to a minimum any internal leakages;
- · provide ease of installation and serving.

The logic units 2/2 (Fig. 1) are formed by a cover (1), a functional unit (2), a spacer (3), a closure spring (4) and a guide bush (5) for each functional unit. Covers can be changed according to the required application and the functional unit can be combined with different springs in order to obtain various opening pressure.

#### Covers

Covers serve to enclose the functional unit and to house the piloting ports and any incorporated valves or manual adjustment devices. Inside the cover are housed also the seats for the calibrated orifice used to optimize the valve opening/closed response time in according to the type of hydraulic system being implemented.


CETOP 3 interface covers are available, ready to accept solenoid valves or other modular valves for the implementation of particular control functions.


The maximum allowed pressure is a function of the flow rate (max.400 bar).

### Fig. 1 - AREA RATIO

| Α          | Main flow                              |
|------------|----------------------------------------|
| В          | Main flow                              |
| X          | External piloting                      |
| <b>Z</b> 1 | External piloting                      |
| <b>Z2</b>  | External piloting                      |
| Υ          | Drainage                               |
| <b>A</b> 1 | A PORT EFFECTIVE CROSS SECTION         |
| <b>A2</b>  | B PORT EFFECTIVE CROSS SECTION         |
| А3         | SPRING CHAMBER EFFECTIVE CROSS SECTION |
|            |                                        |

### **ORIFICE FUNCTIONAL SYMBOLS**





The logic unit operates as a function of the pressures acting on the relevant areas, and different opening pressures are obtained, depending on the dimensions of these areas.

A description of how to interpret the ARON cartridge opening ratios is as follows:

- there are three relevant areas A1, A2, A3;
- area A1 is taken to represent 100%, i.e. it is the reference area;
- area A2, when a 2:1 ratio is shown, is equal to 50% of area A1 and all the other ratios shown in the Table 2 can be calculated on this basis.

As consequence of these area ratios the are different opening pressures whether proceeding from A  $\rightarrow$  B or from B  $\rightarrow$  A.

### **ORDERING CODE**

KEL

Logic element 2/2

\*\*

**16** = NG16 25 = NG25

Function: see table 1

Areas ratio:

**U** = 1 : 1

S = 12.5:1

B = 2:1

(for version with drilled poppet see CF variant)

F = 2:1

 $\mathbf{R} = 2:1$ 

\*

Opening pressure (bar) (Tab.1 pressure values) (Tab.2 spring's colour and code)

\*\*

Calibrated orifices:

**00** = blind

08 = 0.8 mm

09 = 0.9 mm

**10** = 1.0 mm

**12** = 1.2 mm

**14** = 1.4 mm

\*\*

**00** = No variant

V1 = Viton

**CF** = With drilled poppet only for KEL.\*\*.B...

2

Serial No.

TAB. 1 - SYMBOL. FUNCTION, AREA RATIO AND OPENING PRESSURE

| Function                                               | Symbol  | Area<br>ratio              | Code                                                         | Opening pressure (bar)                             |                                                |
|--------------------------------------------------------|---------|----------------------------|--------------------------------------------------------------|----------------------------------------------------|------------------------------------------------|
|                                                        |         |                            |                                                              | A→B                                                | В→А                                            |
| Directional (U)<br>(normally used<br>for relief valve) | \$ A3   | <b>A1 : A3</b><br>1 : 1    | KEL.*.U.L.00<br>KEL.*.U.M.00<br>KEL.*.U.H.00<br>KEL.*.U.J.00 | L = 0.3<br>M = 1.6<br>H = 4<br>J = 9               |                                                |
| Directional (U) with orifice                           | \$ A3   | <b>A1 : A3</b><br>1 : 1    | KEL.*.U.L.**<br>KEL.*.U.M.**<br>KEL.*.U.H.**                 | <b>L</b> = 0.3<br><b>M</b> = 1.6<br><b>H</b> = 4   |                                                |
| Directional (S)                                        | \$ A3 B | <b>A1 : A2</b><br>12.5 : 1 | KEL.*.S.L.00<br>KEL.*.S.M.00<br>KEL.*.S.H.00                 | <b>L</b> = 0.3<br><b>M</b> = 0.6<br><b>H</b> = 1.5 | L = 4<br>M = 8<br>H = 20                       |
| Directional (S) with orifice                           | 3 A3 B  | <b>A1 : A2</b> 12.5 : 1    | KEL.*.S.L.**<br>KEL.*.S.M.**<br>KEL.*.S.H.**                 | <b>L</b> = 0.3<br><b>M</b> = 0.6<br><b>H</b> = 1.5 | L = 4<br>M = 8<br>H= 20                        |
| Directional (B)<br>(normally used<br>for check valve)  | \$ A3   | <b>A1 : A2</b><br>2 : 1    | KEL.*.B.L.00<br>KEL.*.B.M.00<br>KEL.*.B.H.00                 | <b>L</b> = 0.5<br><b>M</b> = 1<br><b>H</b> = 2.5   | L = 1<br>M = 2<br>H = 5                        |
| Flow (F) control                                       | \$ A3   | <b>A1 : A2</b><br>2 : 1    | KEL.*.F.L.**<br>KEL.*.F.M.**<br>KEL.*.F.H.**                 | <b>L</b> = 0.5<br><b>M</b> = 1<br><b>H</b> = 2.5   | L = 1<br>M = 2<br>H = 5                        |
|                                                        | 1       |                            |                                                              |                                                    | →B                                             |
| With<br>sensitized (R)<br>cover                        | ₹ AP    | <b>A1 : A2</b><br>2 : 1    | KEL.*.R.L.00<br>KEL.*.R.M.00<br>KEL.*.R.H.00<br>KEL.*.R.J.00 | NG16<br>L = 0.7<br>M = 1.5<br>H = 4                | NG25<br>L = 0.6<br>M = 1.5<br>H = 3.5<br>J = 9 |

TAB. 2 - Spring's colour and code

| Spring                               | U                                             |                       | S                               |                        | B-F                            | =                      | R                              |                                |
|--------------------------------------|-----------------------------------------------|-----------------------|---------------------------------|------------------------|--------------------------------|------------------------|--------------------------------|--------------------------------|
| type                                 | NG16                                          | NG25                  | NG16                            | NG25                   | NG16                           | NG25                   | NG16                           | NG25                           |
| Cod. L<br>Cod. M<br>Cod. H<br>Cod. J | without colour<br>green<br>blue<br>without co | red<br>yellow<br>blue | without colour<br>red<br>yellow | red<br>green<br>yellow | without colour<br>red<br>green | red<br>green<br>yellow | without colour<br>red<br>green | red<br>green<br>yellow<br>blue |

TAB. 3 - COVERS HYDRAULIC SYMBOLS

| Туре                                                                             | Symbol                                        |
|----------------------------------------------------------------------------------|-----------------------------------------------|
| KEC.**.RI.**.2<br>Directional with<br>external piloting                          | M*- → ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬     |
| KEC.**.CQ.**.2<br>Directional with<br>stroke adjustment                          | M* ₁-× ¬                                      |
| KEC.**.RC.**.2<br>Directional with<br>interface NG6                              | P B A T T W D D D D D D D D D D D D D D D D D |
| KEC.**.PC.**.2<br>With hydraulic outlet<br>pilot valve                           | ZI Y AP X                                     |
| KEC.**.SH.**.2<br>With built-in-exchange<br>valve (shuttle)                      | M*1 — ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~     |
| KEC.**.SP.**.2<br>With built-in-exchange<br>valve (shuttle) and<br>interface NG6 | M P B A                                       |

### COVERS FOR LOGIC ELEMENTS

এদ brevini

### COVERS ORDERING CODE

KEC

\*\*

2

Covers for logic element 2/2

**16** = NG16

**25** = NG25

Type of cover (see Tab. 3)

RI = Directional with external piloting

**CQ** = Directional with stroke adjustment

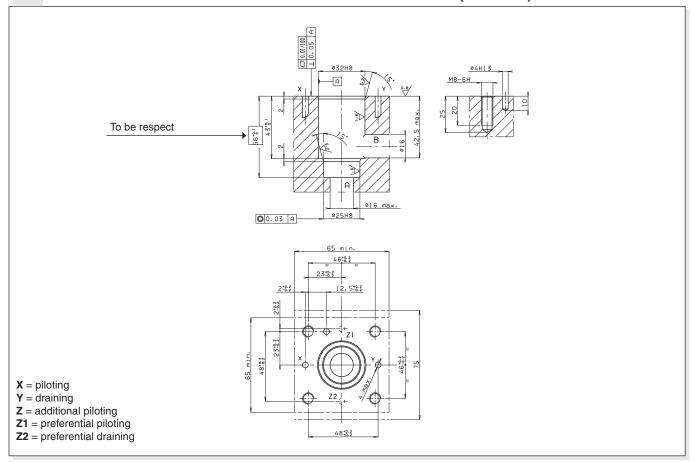
**RC** = Directional with interface NG6

**PC** = With hydraulic outlet pilot valve **SH** = With built-in-exchange (shuttle)

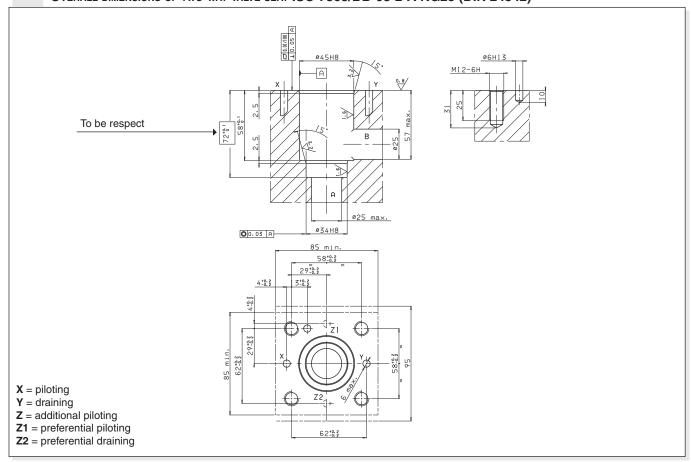
**SP** = With built-in-exchange and interface NG6

00 = No variant

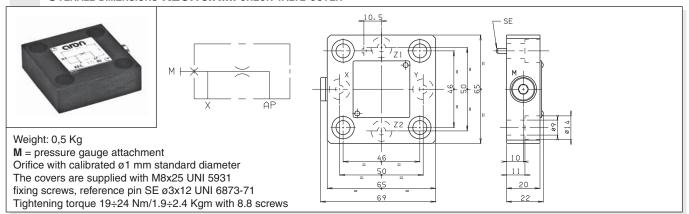
V1 = Viton


Serial No.

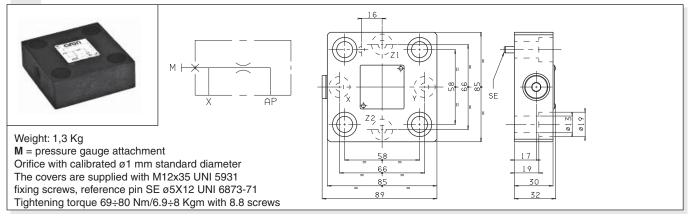
#### HYDRAULIC MOUNTING SCHEMES FOR KEC COVERS AND KEL LOGIC ELEMENTS


| HYDRAULIC MOUNTING SCHEMES FOR KEC COVERS AND                                                                                                         | KEL LOGIC ELEMENTS     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| KEC.16/25.RI                                                                                                                                          |                        |
| COVER WITH EXTERNAL PILOTING PORT                                                                                                                     |                        |
|                                                                                                                                                       | M* → ≅ ¬               |
| $A = External piloting X allows flow in both directions A \rightarrow B and$                                                                          |                        |
| $B \rightarrow A$ . B = For rapid sequence safety circuit; $A \rightarrow B$ flow is allowed;                                                         | X TAP X TAP            |
| when pressure reaches X valve closes. Only for CF variant (KEL.**:B with drilled poppet), with no pressure                                            | B KELB                 |
| in X it operates as a check valve between A and B.                                                                                                    | A A                    |
|                                                                                                                                                       |                        |
| KEC.16/25.CQ                                                                                                                                          |                        |
| COVER WITH STROKE LIMITATION                                                                                                                          | M* → ¬                 |
| Allows flow regulation in both divestions A . D and D . A                                                                                             |                        |
| Allows flow regulation in both directions $A \to B$ and $B \to A$ .<br>By limiting the spool stroke the flow in both direction can be limited.        | Y - QP                 |
|                                                                                                                                                       | 1 \$                   |
|                                                                                                                                                       | KELF                   |
|                                                                                                                                                       |                        |
|                                                                                                                                                       | "                      |
| KEC.16/25.RC                                                                                                                                          |                        |
| Cover with interface NG6                                                                                                                              | AD3                    |
|                                                                                                                                                       |                        |
| These covers have one mounting surface preset for a solenoid pilot valve.                                                                             |                        |
| Proper connection of Y and Z2 to the A and/or B ports will allowing                                                                                   | KECRC                  |
| piloting of the valve opening and closing functions.                                                                                                  | X Z2 AP ZI Y           |
|                                                                                                                                                       | 3                      |
|                                                                                                                                                       | B KELB                 |
|                                                                                                                                                       | 16                     |
| KEC.16/25.PC                                                                                                                                          |                        |
| COVER WITH HYDRAULIC RELEASE PILOT VALVE                                                                                                              |                        |
|                                                                                                                                                       | KECPC                  |
| This is a cover with external piloting to be connected to B port to                                                                                   | <u> </u>               |
| obtain the standard unit function. Z1 pressure piloting allows flow transfer from $B \rightarrow A$ . Normally, in order to ensure the holding condi- | Z1 Y AP'' (X           |
| tion the main port B is connected to the load; piloting in Z1 should                                                                                  | KELB                   |
| be at least 50% of the load pressure in B.                                                                                                            | A                      |
| VEO 40/05 OH                                                                                                                                          |                        |
| KEC.16/25.SH                                                                                                                                          |                        |
| COVER WITH INTEGRAL CHANGEOVER VALVE                                                                                                                  | M* KECSH               |
| The logic element closes as function of the larger pressure in X                                                                                      |                        |
| and Z1, selected by the shuttle valve.                                                                                                                | X Z2 AP Z1             |
| , , , , , , , , , , , , , , , , , , , ,                                                                                                               | <u>  3   _  </u>       |
|                                                                                                                                                       | B KELB                 |
|                                                                                                                                                       | Y <sub>A</sub>         |
| KEC16/25.SP Cover with integral changeover                                                                                                            |                        |
| VALVE AND INTERFACE NG6                                                                                                                               | AD3                    |
|                                                                                                                                                       |                        |
| The AP branch of the cartridge valve spring is connected with the                                                                                     |                        |
| pilot valve port.  External piloting operates from Z2 → A of the pilot valve.                                                                         | MXTÓ)   KECSP          |
| An example is shown in the diagram of a type of connection used                                                                                       | X ZII Y AP Z2          |
| to keep the conical seat valve closed on both sides (interrupted                                                                                      | ا ا ا ا ا ا ا          |
| flow both from A $\rightarrow$ B and from B $\rightarrow$ A).                                                                                         | KELB                   |
|                                                                                                                                                       |                        |
| KRA.16/25 Cover with electrical control of the                                                                                                        |                        |
| CLOSED POSITION AND INTERFACE NG6                                                                                                                     |                        |
| San cartridge type VDA most name                                                                                                                      |                        |
| See cartridge type KRA next pages                                                                                                                     |                        |
|                                                                                                                                                       | <u> </u>               |
|                                                                                                                                                       | 22 ^ Hr ' 21<br>\$ AP_ |
|                                                                                                                                                       | В                      |
|                                                                                                                                                       |                        |
|                                                                                                                                                       | À                      |

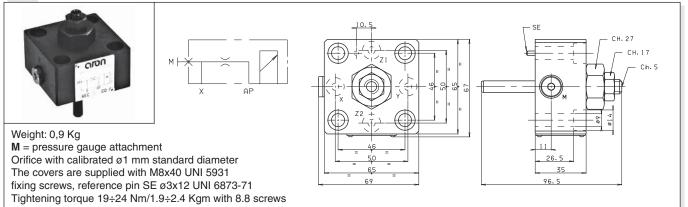
### 5


### Overall dimensions of two-way valve seat ISO 7368/BA-06-2-A NG16 (DIN 24342)

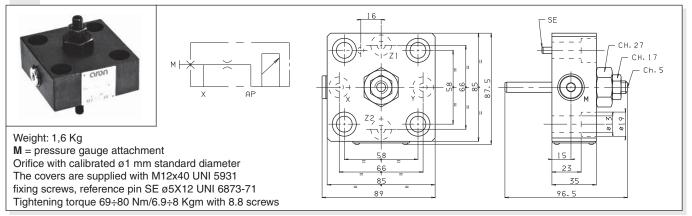



### OVERALL DIMENSIONS OF TWO-WAY VALVE SEAT ISO 7368/BB-08-2-A NG25 (DIN 24342)



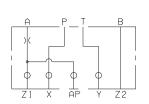

### OVERALL DIMENSIONS KEC.16.RI... CHECK VALVE COVER




### OVERALL DIMENSIONS KEC.25.RI... CHECK VALVE COVER



### OVERALL DIMENSIONS KEC.16.CQ.. COVER WITH STROKE ADJUSTMENT




### OVERALL DIMENSIONS KEC.25.CQ.. COVER WITH STROKE ADJUSTMENT



### OVERALL DIMENSIONS KEC.16.RC... COVER WITH INTERFACE CETOP 3/NG6



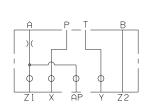


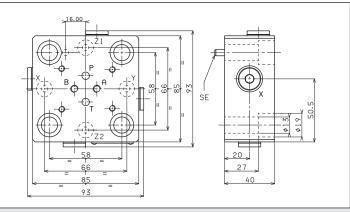
22.5

Weight: 1,2 Kg

M = pressure gauge attachment

Orifice with calibrated ø1 mm standard diameter


The covers are supplied with M8x40 UNI 5931


fixing screws, reference pin SE ø3x12 UNI 6873-71

tightening torque 19÷24 Nm/1.9÷2.4 Kgm with 8.8 screws

### OVERALL DIMENSIONS KEC.25.RC... COVER WITH INTERFACE CETOP 3/NG6



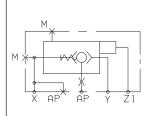


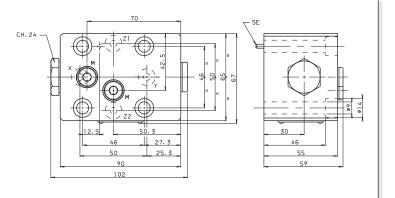


Weight: 1,8 Kg

**M** = pressure gauge attachment

Orifice with calibrated ø1 mm standard diameter


The covers are supplied with M12x45 UNI 5931


fixing screws, reference pin SE ø5X12 UNI 6873-71

tightening torque 69÷80 Nm/6.9÷8 Kgm with 8.8 screws

### OVERALL DIMENSIONS KEC.16.PC... COVER WITH HYDRAULIC OUTLET PILOT VALVE

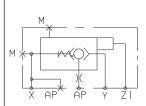


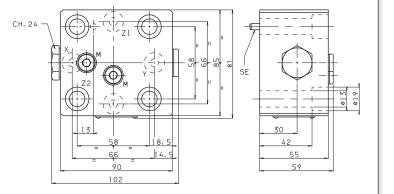




Weight: 2,1 Kg

**M** = pressure gauge attachment


Orifice with calibrated ø1 mm standard diameter


The covers are supplied with M8x60 UNI 5931

fixing screws, reference pin SE ø3x12 UNI 6873-71 tightening torque 19÷24 Nm/1.9÷2.4 Kgm with 8.8 screws

### OVERALL DIMENSIONS KEC.25.PC... COVER WITH HYDRAULIC OUTLET PILOT VALVE

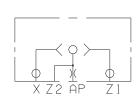






Weight: 2,7 Kg

**M** = pressure gauge attachment


Orifice with calibrated ø1 mm standard diameter

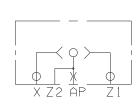
The covers are supplied with M12x60 UNI 5931

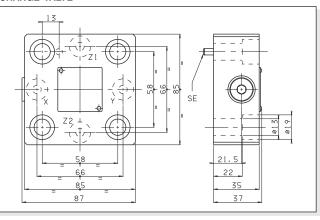
fixing screws, reference pin SE ø5X12 UNI 6873-71 tightening torque 69÷80 Nm/6.9÷8 Kgm with 8.8 screws

### OVERALL DIMENSIONS KEC.16.SH... COVER WITH BUILT-IN EXCHANGE VALVE





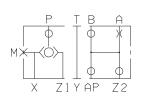

26.5 50

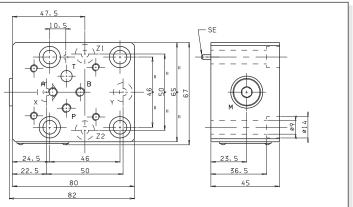

Weight: 0,9 Kg

**M** = pressure gauge attachment Orifice with calibrated ø1 mm standard diameter The covers are supplied with M8x40 UNI 5931 fixing screws, reference pin SE ø3x12 UNI 6873-71 tightening torque 19÷24 Nm/1.9÷2.4 Kgm with 8.8 screws

### OVERALL DIMENSIONS KEC.25.SH... COVER WITH BUILT-IN EXCHANGE VALVE



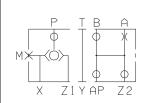


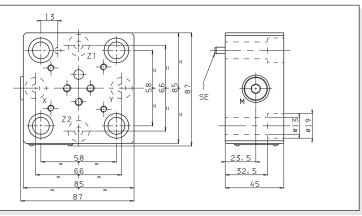




Weight: 1,5 Kg **M** = pressure gauge attachment Orifice with calibrated ø1 mm standard diameter The covers are supplied with M12x40 UNI 5931 fixing screws, reference pin SE ø5X12 UNI 6873-71 tightening torque 69÷80 Nm/6.9÷8 Kgm with 8.8 screws

### OVERALL DIMENSIONS KEC.16.SP COVER WITH BUILT-IN EXCHANGE VALVE AND INTERFACE CETOP 3/NG6






Weight: 1,4 Kg M = pressure gauge attachment Orifice with calibrated ø1 mm standard diameter The covers are supplied with M8x50 UNI 5931 fixing screws, reference pin SE ø3x12 UNI 6873-71 tightening torque 19÷24 Nm/1.9÷2.4 Kgm with 8.8 screws

### OVERALL DIMENSIONS KEC.25.SP COVER WITH BUILT-IN EXCHANGE VALVE AND INTERFACE CETOP 3/NG6







Weight: 2 Kg

**M** = pressure gauge attachment Orifice with calibrated ø1 mm standard diameter The covers are supplied with M12x50 UNI 5931 fixing screws, reference pin SE ø5X12 UNI 6873-71 tightening torque 69÷80 Nm/6.9÷8 Kgm with 8.8 screws



| MAX. PRESSURE      | COVERS           |
|--------------------|------------------|
| KEC.16/25 WITH CMP | Ch. V PAGE 10    |
| C.*.P.16/25        | Ch. V PAGE 11    |
| CETOP 3/NG06       | Ch. I PAGE 8     |
| AD.3.E             | Ch. I PAGE 11    |
| AM.3.VM            | CH. IV PAGE 9    |
| XP.3               | Ch. VIII PAGE 26 |

#### MAXIMUM PRESSURE CARTRIDGE VALVES

Aron maximum pressure cartridge

valves allow control of hydraulic

circuit pressures up 400 bar and 350

Besides the normal manual pres-

I/min maximum flow rate (NG25).

Nominal size (max. diameter)

Max. operating pressure

Maximum nominal flow rate NG16

Maximum nominal flow rate NG25

Setting ranges

16mm / 25mm

400 bar

150 l/min

350 l/min

15 ÷ 400 bar

এন brevini

sure regulation mode, function like electrical command for discharge to drain, remote control, proportional pressure control or electrically selected dual pressure levels are also available.

The CETOP 3/NG6 interface allows the mounting of a AD.3.E... valve. A standard cartridge valve DIN 24342 is used. A cover not according to DIN rules is also available.

The valve response specification may be modified by selection of different internal orifices according to the required application. The standard version has calibrated orifices of  $\mathcal{O}$  1 mm in X and AP.

#### DIN STANDARDS COVER ORDERING CODE

KEC

DIN standards cover

\*\*

**16** = NG16

**25** = NG25

\*\*

Type of cover

**ME** = Max. pressure valve with interface CETOP 3

MP = Max. pressure valve

**UE** = Exclusion valve with interface CETOP 3

**UN** = Exclusion valve

SL = Sequencing valve

\* Setting ranges

 $1 = 15 \div 45$  bar (white spring)

 $2 = 15 \div 145$  bar (yellow spring)

 $3 = 60 \div 400$  bar (green spring)

Type of adjustment

M = Plastic knob

C = Grub screw

00 = No variant

V1 = Viton

Serial No.

#### PLATE MOUNTING COVERS ORDERING CODE

C\*P

\*

\*\*

2

\*\*

3

 $\mathbf{M} = \text{Cover with max. pressure valve}$ 

**U** = Cover with exclusion valve

S = Cover with sequencing valve

**E** = Presetting for solenoid valve (Omit if not required)

**16** = NG16

**25** = NG25

Type of adjustment

M = Plastic knob

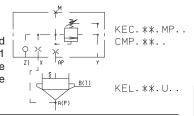
C = Grub screw

Setting ranges

 $1 = 15 \div 45$  bar (white spring)

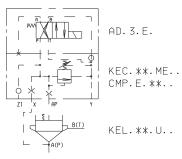
 $2 = 15 \div 145$  bar (yellow spring)

 $3 = 60 \div 400$  bar (green spring)


\*\* **00** = No variant

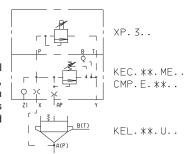
V1 = Viton

Serial No.


#### Manual pressure regulation

This regulation facility is incorporated in the cartridge closing cover. A Z1 port is provided on the cover for remote piloting via directional or pressure control valves.

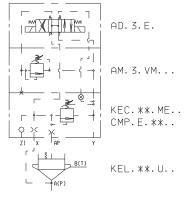



#### MANUAL PRESSURE REGULATION AND ELECTRICAL COMMAND FOR DISCHARGE TO DRAIN

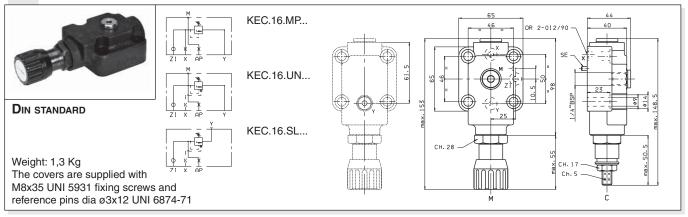
This arrangement uses an electrically controlled valve type AD3E15.. which normally, in the de-energized position, allows discharge to drain of the controlled flow. When energized, the system operates at the pressure set on the piloting unit incorporated in the closing cover.



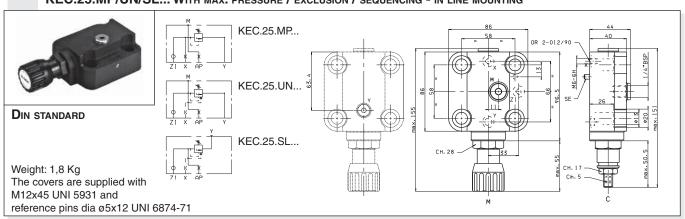
# MANUAL REGULATION AND PROPORTIONAL CONTROL OF THE PRESSURE


This arrangement uses a proportional pressure valve type XP3.. as the pilot, which allows proportional regulation of the controlled system pressure as a function of an electrical command signal.

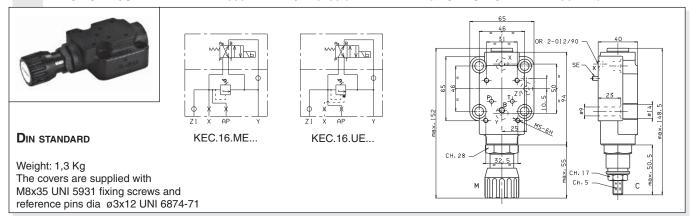



# MANUALLY ADJUSTABLE AND ELECTRICALLY SELECTED TWO LEVEL PRESSURE UNIT

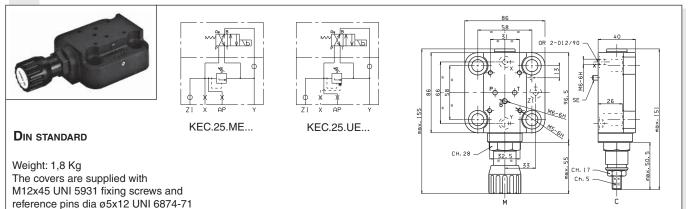
This arrangement uses a dual solenoid electrically controlled valve type AD3E02C.. and a modular maximum pressure valve type AM3VMA... which, when combined, allow implementation of an electrically selected two level pressure system.


Normally, with the solenoid valve de-energized, the controlled flow is discharged to drain.

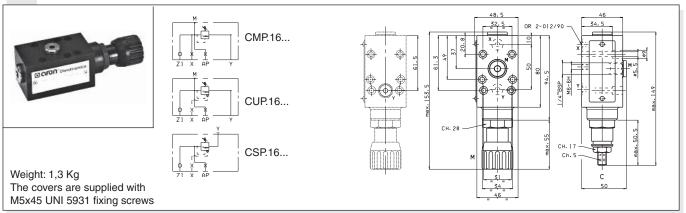



#### KEC.16.MP/UN/SL... WITH MAX. PRESSURE VALVE / EXCLUSION / SEQUENCING - IN LINE MOUNTING

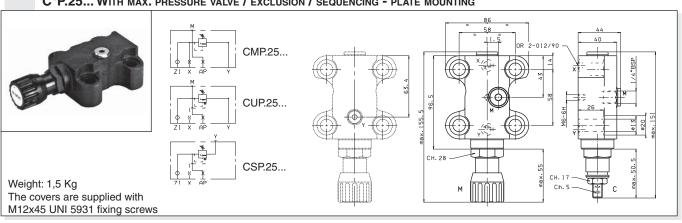



#### KEC.25.MP/UN/SL... WITH MAX. PRESSURE / EXCLUSION / SEQUENCING - IN LINE MOUNTING

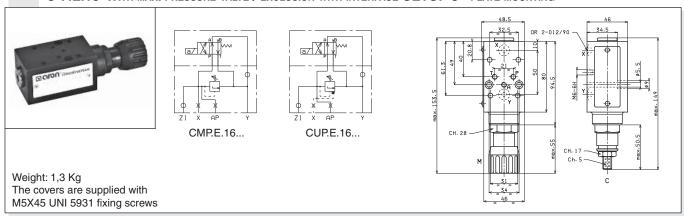



#### KEC.16.ME/UE WITH MAX. PRESSURE VALVE / EXCLUSION WITH INTERFACE CETOP 3 - IN LINE MOUNTING

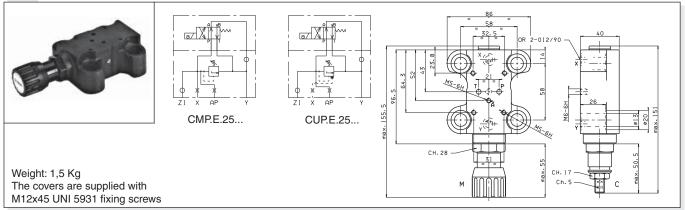



#### KEC.25.ME/UE WITH MAX. PRESSURE VALVE / EXCLUSION WITH INTERFACE CETOP 3 - IN LINE MOUNTING




#### C\*P.16... WITH MAX. PRESSURE VALVE / EXCLUSION / SEQUENCING - PLATE MOUNTING




#### C\*P.25... WITH MAX. PRESSURE VALVE / EXCLUSION / SEQUENCING - PLATE MOUNTING



#### C\*P.E.16 WITH MAX. PRESSURE VALVE / EXCLUSION WITH INTERFACE CETOP 3 - PLATE MOUNTING



#### C\*P.E.25 WITH MAX. PRESSURE VALVE / EXCLUSION WITH INTERFACE CETOP 3 - PLATE MOUNTING





| CH. V PAGE 13 |
|---------------|
| CH. V PAGE 14 |
| CH. V PAGE 15 |
| Ch. I PAGE 14 |
| Ch. I PAGE 19 |
| Ch. I PAGE 22 |
| Ch. I page 20 |
|               |

#### KRA.16/25... CARTRIDGE VALVES WITH ELECTRICAL POSITION CONTROL NG16 / NG25 খ্যদ brevini

This valve series is used in those applications where monitoring of the "actual" valve position is required for managing machine safety cycles as required by current accident prevention legislation. Typical examples of applications where this product is used include: hydraulic presses in general, plastic component injection and blow-form presses, die-casting presses.

The valve is composed of a closure cover where the inductive position monitoring proximity sensor is inserted to signal the two possible states of logic element manufactured to DIN 24342 standard.

This valve, in view of its being placed inside a safety system loop, can detect movement dangerous both for the safety of the operator and of the machine itself.

Availability of the CETOP 3 mounting interface on closure cover allows direct insertion of the piloting valves into the main valve, offering in this way to the designer the possibility to produce compact systems which can be easily mounted inside the machine.

# HYDRAULIC SYMBOL

#### **ORDERING CODE**

**KRA** 

Cartridge valve with electrical position control (logic element 2/2 incorporated)

\*\*

16 = NG16 25 = NG25

Calibrated orifices at ports A and P:

0 = no orifice

 $1 = \emptyset$  1 mm dia opening (NG16 in standard configuration)

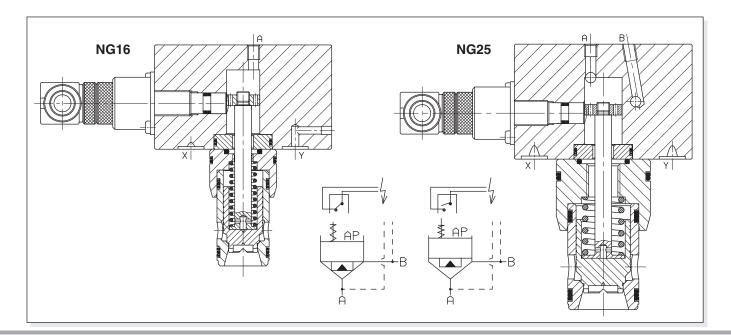
2 = Ø 1.2 mm dia opening (NG25 in standard configuration)

Opening pressure (bar):

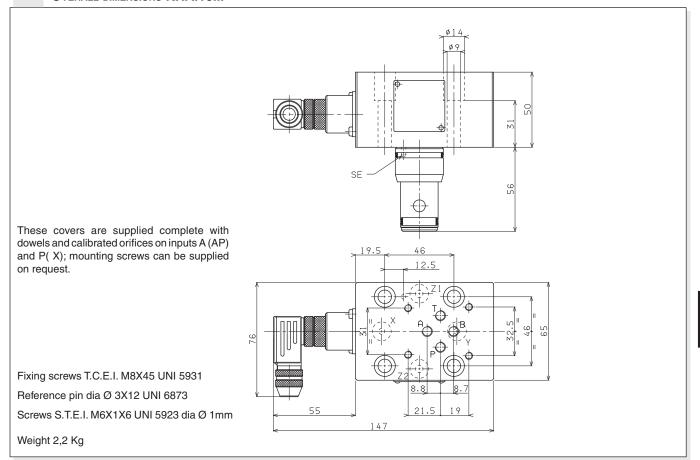
NG16

NG25

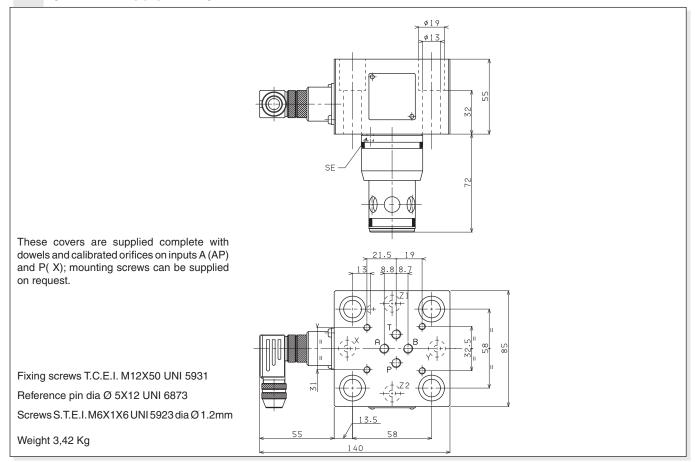
H = 4 (green spring) J = 12 (no colour spring) 9 (blue spring)


3.5 (yellow spring)

00


No variant

1


Serial No.



#### OVERALL DIMENSIONS KRA.16...



#### OVERALL DIMENSIONS KRA.25...



| KRA.16/25 + AI      | D.3.V         |
|---------------------|---------------|
| PROXIMITY FOR KRA   | Ch. V PAGE 15 |
| AD.3.V              | Ch. I PAGE 14 |
| D15 DC coil         | Ch. I PAGE 19 |
| L.V.D.T. FOR AD.3.V | Ch. I PAGE 22 |
| STANDARD CONNECTORS | Ch. I page 20 |

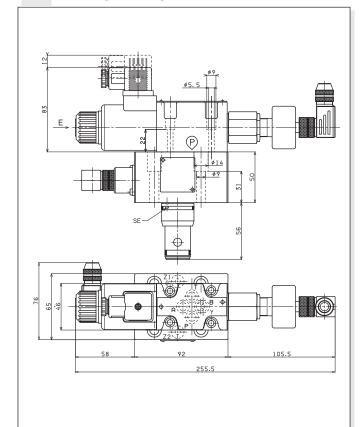
#### KRA.16/25... + AD.3.V... 2/2 CARTRIDGE VALVES

#### WITH ELECTRICAL POSITION CONTROL VALVE

This valve series is used in those applications where monitoring of the "actual" valve position is required for managing machine safety cycle as required by current accident prevention legislation.

Typical example of application where this product is used include: hydraulic presses in general, plastic components injection and blow-form presses, die-casting presses. The valve is composed of closure cover where the inductive position monitoring proximity sensor is inserted to signal the two possible states of logic element manufactured to DIN 24342 standard.

This valve, in view of its being placed inside a safety system loop, can detect movements dangerous both for the safety of the operator and of the machine itself. Use a single solenoid directional valve AD.3.V... as piloting unit allows increase in the safety system control level, since even the piloting unit is equipped with a position monitoring proximity sensor capable of signalling the two possible valve states.

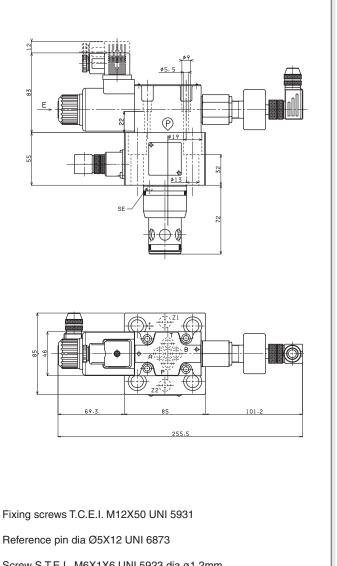

# HYDRAULIC SYMBOL ΑP

খ্যদ brevini

By combining these two monitoring systems it becomes possible to evaluate the hydraulic system response speed to prevent any possible malfunctioning or dangerous situations

These covers are supplied complete with dowel and calibrated orifices on inputs A (AP) /P( X); mounting screws can be supplied on request

#### KRA.16... + AD.3.V...




Fixing screws T.C.E.I. M8X45 UNI 5931

Reference pin dia Ø 3X12 UNI 6873

Screw S.T.E.I. M6X1X6 UNI 5923 dia Ø 1mm

#### KRA.25... + AD.3.V...



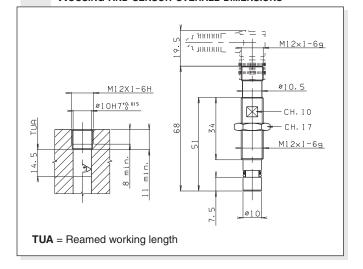
Screw S.T.E.I. M6X1X6 UNI 5923 dia ø1.2mm



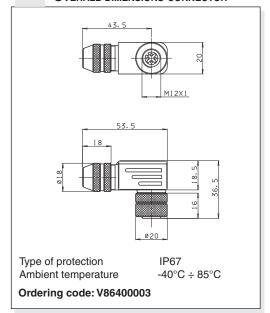


The inductive proximity sensors make it possible to detect metal objects; the operating principle is based on a high frequency oscillator which produces an electromagnetic field in the immediate vicinity of the sensor.

The presence of a metal object (activator) inside the field dampness the amplitude of the oscillation because parte of electromagnetic energy is transferred from the sensor to the activator and from there it is dissipated through the effect of the induced currents.


In addition to the shape and the dimensions of the sensor, its sensitivity also depends on the type of metal from which the activator is made.

#### **SPECIFICATIONS**


| Max. pressure                    | 500 bar                |
|----------------------------------|------------------------|
| External diameter                | M12x1                  |
| Release distance                 | 0 ÷ 1.1 mm             |
| Outlet function                  | PNP - NA               |
| Stabilized supply                | 10 ÷ 30 VDC            |
| Release hysteresis               | ≤ 0.2 mm               |
| Type of mounting                 | wire                   |
| Max. current supplied            | 130 mA                 |
| Residual undulation              | ≤ 15%                  |
| Max switching frequency          | 1000 Hz                |
| Casing material                  | stainless steel        |
| Type of attachment               | connector              |
| Degree of protection             | IP68 on active surface |
| Ambient temperature              | -25°C÷70°C             |
| Protection against short circuit | yes                    |

# Outlet PNP-NA 1 = brown (positive) 3 = blue (negative) 4 = black (positive signal)

#### HOUSING AND SENSOR OVERALL DIMENSIONS



#### **O**VERALL DIMENSIONS CONNECTOR



#### **A**BBREVIATIONS

|           | ABBREVIATIONS               |
|-----------|-----------------------------|
| AP        | HIGH PRESSURE CONNECTION    |
| AS        | Phase Lag (DEGREES)         |
| BP        | Low pressure connection     |
| С         | STROKE (MM)                 |
| CH        | ACROSS FLATS                |
| Сн        | INTERNAL ACROSS FLATS       |
| DA        | AMPLITUDE DECAY (DB)        |
| DP        | DIFFERENTIAL PRESSURE (BAR) |
| F         | Force (N)                   |
| <b>l%</b> | INPUT CURRENT (A)           |
| M         | MANOMETER CONNECTION        |
| NG        | Knob turns                  |
| OR        | SEAL RING                   |
| Р         | Load pressure (bar)         |
| PARBAI    | Y PARBAK RING               |
| PL        | Parallel connection         |
| PR        | Reduced pressure (bar)      |
| Q         | FLOW (L/MIN)                |
| Qρ        | Pump flow (L/min)           |
| SE        | ELASTIC PIN                 |
| SF        | Ball                        |
| SR        | Series connection           |
| X         | PILOTING                    |
| Υ         | Drainage                    |

# IN LINE VALVES CARTRIDGE VALVES

SEE CATALOGUE
CODE DOCO0044


File: 06TA\_I VI • 1 06/2011/i

#### **A**BBREVIATIONS

|           | ADDREVIATIONS               |
|-----------|-----------------------------|
| AP        | HIGH PRESSURE CONNECTION    |
| AS        | Phase Lag (degrees)         |
| BP        | Low pressure connection     |
| С         | STROKE (MM)                 |
| CH        | ACROSS FLATS                |
| Сн        | INTERNAL ACROSS FLATS       |
| DA        | AMPLITUDE DECAY (DB)        |
| DP        | DIFFERENTIAL PRESSURE (BAR) |
| F         | Force (N)                   |
| <b>l%</b> | INPUT CURRENT (A)           |
| M         | MANOMETER CONNECTION        |
| NG        | Knob turns                  |
| OR        | SEAL RING                   |
| Р         | LOAD PRESSURE (BAR)         |
| PARBA     | PARBAK RING                 |
| PL        | Parallel connection         |
| PR        | Reduced pressure (bar)      |
| Q         | FLOW (L/MIN)                |
| Qρ        | PUMP FLOW (L/MIN)           |
| SE        | ELASTIC PIN                 |
| SF        | Ball                        |
| SR        | Series connection           |
| Χ         | PILOTING                    |
| Υ         | Drainage                    |

#### CAST IRON (\*) AND ALUMINIUM (\*) SUBPLATES

## SUBPLATES CETOP 2



| BS.2 |                |
|------|----------------|
|      | Ch. VII PAGE 2 |
| BC.2 |                |
|      | Ch. VII PAGE 4 |
| BM.2 |                |
|      | Ch. VII PAGE 5 |

# SUBPLATES CETOP 5



| BS.5 |                 |
|------|-----------------|
|      | CH. VII PAGE 19 |
| BC.5 |                 |
|      | Ch. VII PAGE 24 |
|      |                 |
| BM.5 |                 |

# SUBPLATES CETOP 3



| BS.3          |                 |
|---------------|-----------------|
|               | CH. VII PAGE 7  |
|               | On. VII FAGE 7  |
| BS.3.W        |                 |
|               | Ch. VII PAGE 9  |
|               |                 |
| BC.3          |                 |
|               | CH. VII PAGE 10 |
| BC.* PER XQ*3 |                 |
|               | Ch. VII page 13 |
|               |                 |
| BC.06         |                 |
|               | 0 1/11 44       |
|               | Ch. VII page 14 |
| BM.3          |                 |
|               | CH. VII PAGE 16 |
|               | CH. VII PAGE 10 |

## CMP10 CARTRIDGE VALVE



Ch. VII page 30

For other cartridge valve, see catalogue code DOC00044

Cast iron subplates, recommended pressure max. 320 bar Aluminium subplates, recommended pressure max. 230 bar

#### **BS.2...** SINGLE STATION SUBPLATE

#### **CETOP 2 SUBPLATES**

BS.2.\*\*.../ BS.2.12...

BS.2.14...

Ch. VII PAGE 2

BS.2.16... / BS.2.20...

BS.3.2...

Ch. VII PAGE 3

BC.2.50.AB... / BC.2.50.PT...

BC.2.51...

CH. VII PAGE 4

BM.2.\*\*.../ BM.2.60...

CH. VII PAGE 5

BM.2.50... / BM.2.70...

CH. VII PAGE 6

CMP.02... BFP CARTRIDGE CATALOGUE

#### BS.2.\*\*...

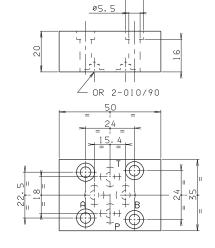
BS ) | Single subplate (blanking)

2 CETOP 2/NG4

02 / 03 / 04 / 05 / 07

No variant

Serial No.


Weight: 0,09 Kg

\*\*

00

1

Fixing screws M5x25 UNI 5931



BS. \*. 02
P T B A
BS. \*. 03







#### **BS.2.12** (REAR CONNECTORS)

BS Single subplate

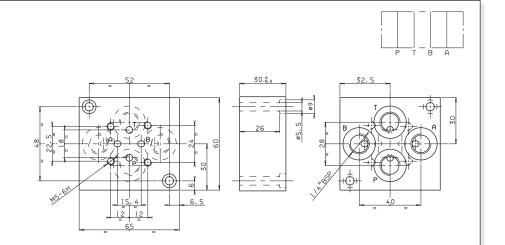
2

CETOP 2/NG4

12

1/4" BSP rear connectors

00


No variant

1

Serial No.

Weight: 0,3 Kg

Fixing screws M5x35 UNI 5931



#### **BS.2.14** (SIDE CONNECTORS)

Single subplate

2

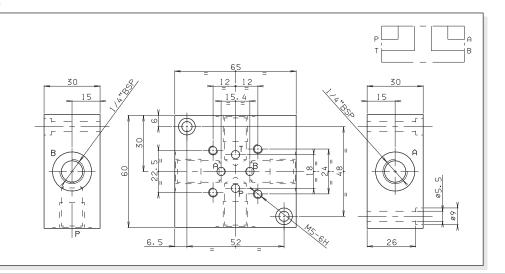
BS

CETOP 2/NG4

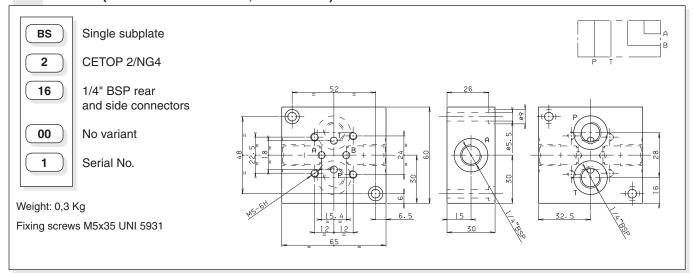
14

1/4" BSP side connectors

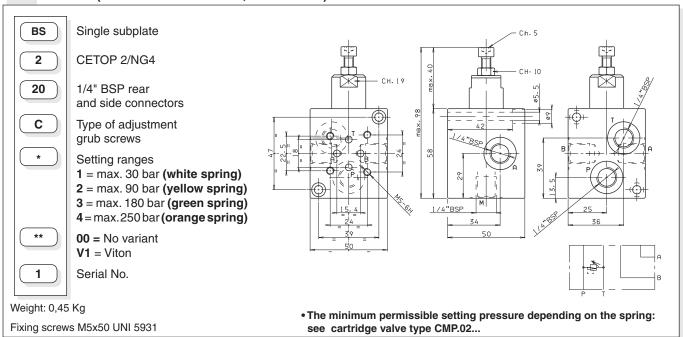
00


No variant

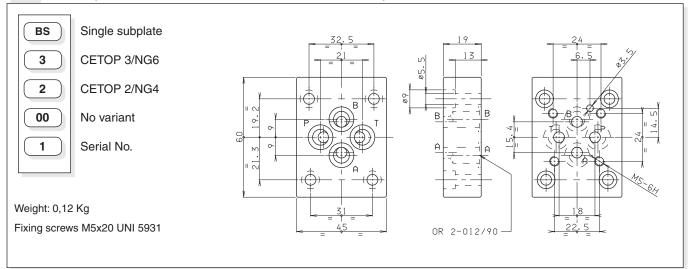
1


Serial No.

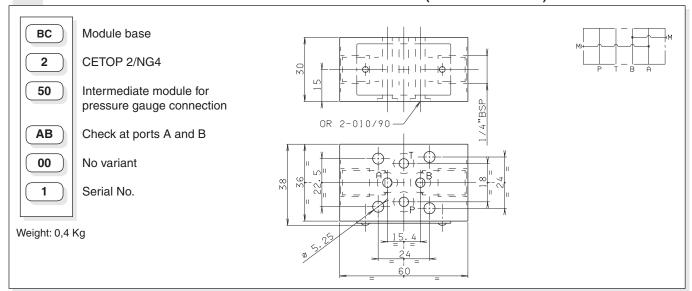
Weight: 0,3 Kg


Fixing screws M5x35 UNI 5931

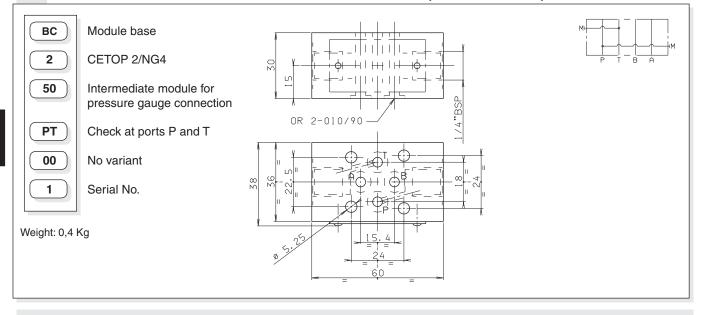



#### BS.2.16 (CONNECTORS SIDE A AND B, REAR P AND T)

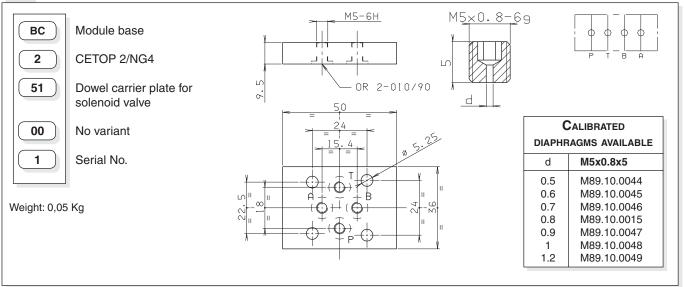



#### BS.2.20 (CONNECTORS SIDE A AND B, REAR P AND T)

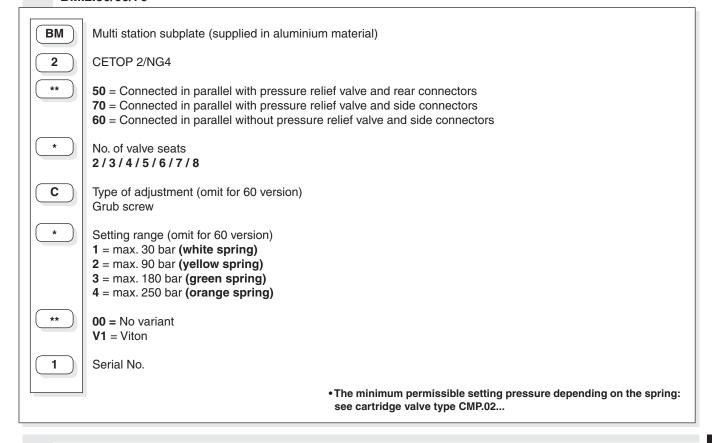



#### BS.3.2 (REDUCTION PLATE FROM CETOP 3/NG6 TO CETOP 2/NG4)

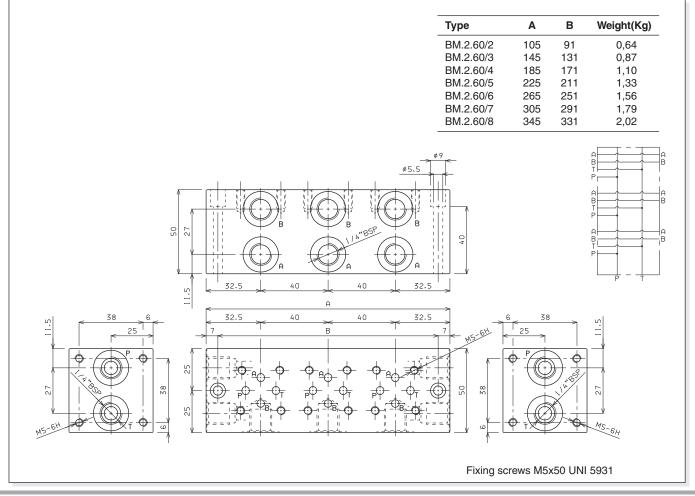



#### BC.2.50.AB INTERMEDIATE MODULE FOR PRESSURE GAUGE CONNECTION (VENTS A AND B LINES)

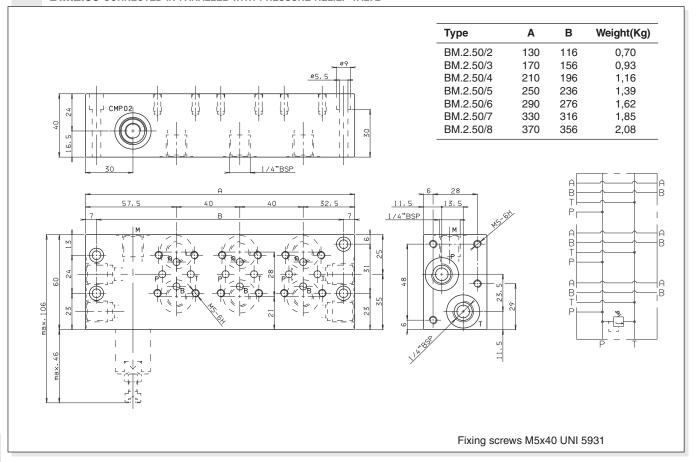



#### BC.2.50.PT INTERMEDIATE MODULE FOR PRESSURE GAUGE CONNECTION (VENTS P AND T LINES)

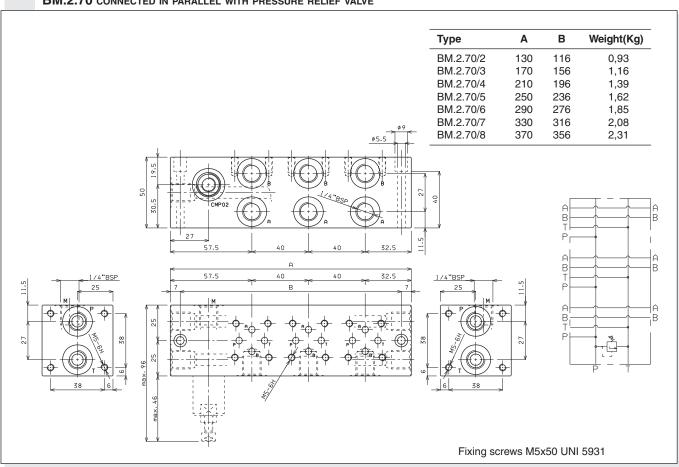



#### BC.2.51 DOWEL CARRIER PLATE FOR SOLENOID VALVE




#### BM.2.50/60/70




#### BM.2.60 CONNECTED IN PARALLEL WITHOUT PRESSURE RELIEF VALVE



#### BM.2.50 CONNECTED IN PARALLEL WITH PRESSURE RELIEF VALVE



#### BM.2.70 CONNECTED IN PARALLEL WITH PRESSURE RELIEF VALVE



7

06/2015/e



#### **CETOP 3 SUBPLATES**

BS.3.01... / BS.3.0\*...

Ch. VII PAGE 7

BS.3.10/11... / BS.3.12/13...

BS.3.14/15... / BS.3.16/17...

CH. VII PAGE 8

BS.3.20/21... / BS.VMP.10...

BS.3.W...

Ch. VII PAGE 9

BC.3.25/27... / BC.3.30/32...

BC.3.40...

CH. VII PAGE 10

BC.3.41/\*...

CH. VII PAGE 11

BC.3.50... / BC.3.51...

BC.3.07... / BC.3.107...

CH. VII PAGE 12

BC.3.08... / BC.3.09...

BC.06.XQ3... / BC.06.XQP3...

Ch. VII PAGE 13

BC.06.25/27...

CAP. VII PAGE 14

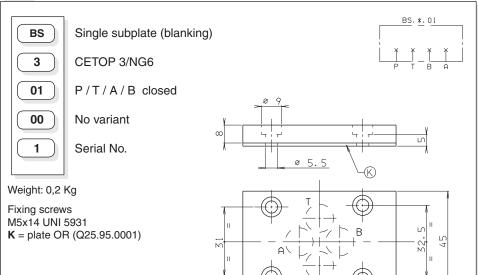
BC.06.30/32... / BC.06.40...

BC.06.41/\*... Ch. VII PAGE 15

BM.3.\*\*.../BM.3.60...

Ch. VII PAGE 16

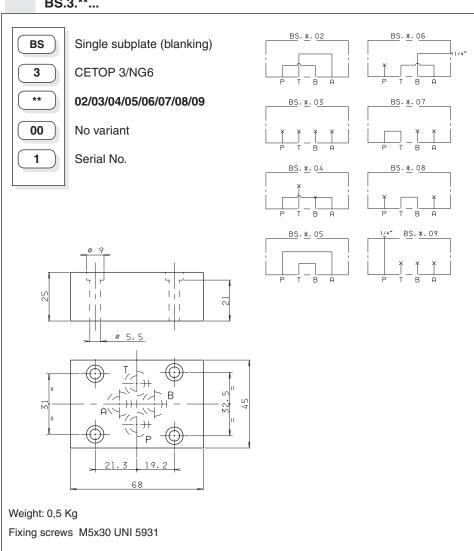
BM.3.50.../ BM.3.70...


Ch. VII PAGE 17

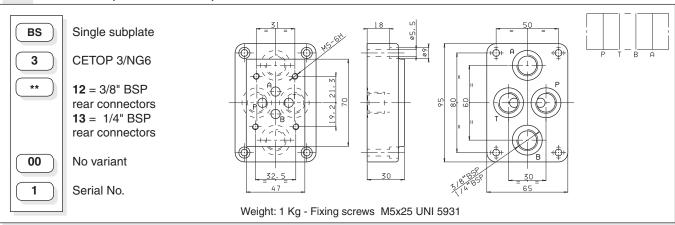
BM.3.52... / BM.3.72...

CH. VII PAGE 18

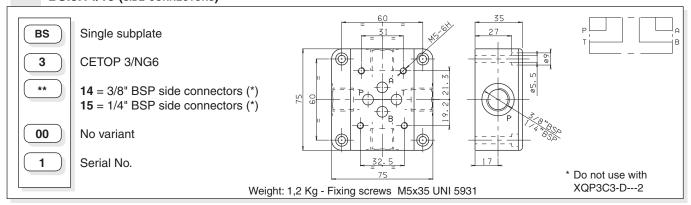
| CMP.10 | CH. VII PAGE 30  |
|--------|------------------|
| XQ.3   | CH. VIII PAGE 20 |
| XQP.3  | Ch. VIII PAGE 22 |


#### BS.3.01...

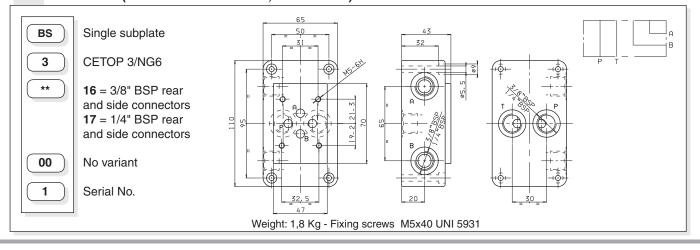



68

Use for pressures up to 200 bar.

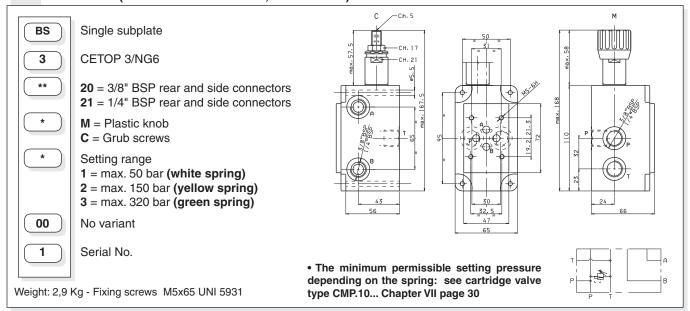




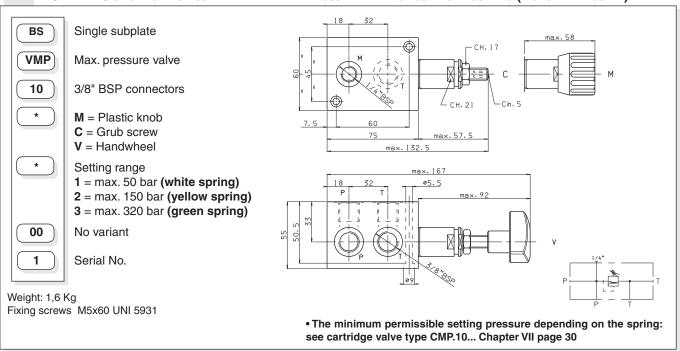


#### BS.3.12/13 (REAR CONNECTORS)



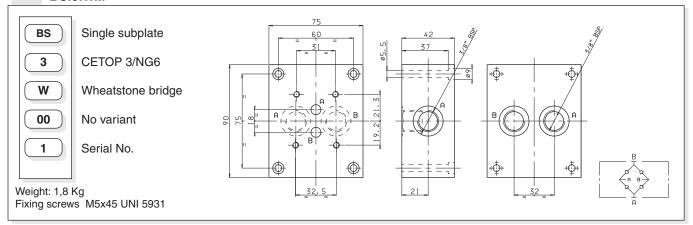
#### BS.3.14/15 (SIDE CONNECTORS)



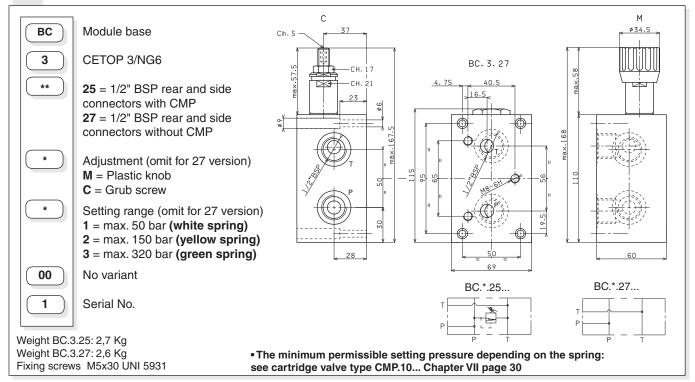

#### BS.3.16/17 (CONNECTORS SIDE A AND B, REAR P AND T)



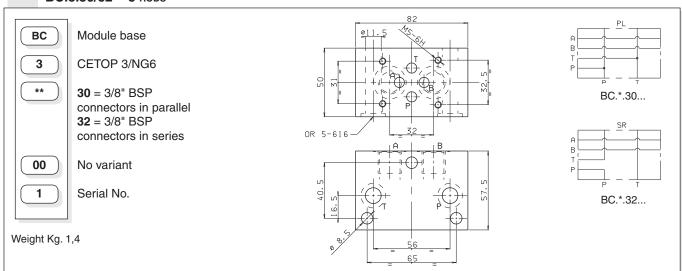

7


#### BS.3.20/21 (CONNECTORS SIDE A AND B, REAR P AND T)

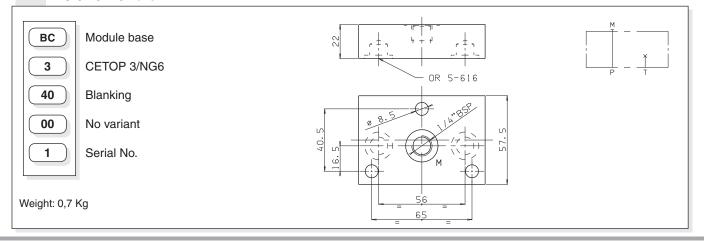



#### BS.VMP.10 SINGLE STATION SUBPLATE WITH MAX. PRESSURE VALVE FOR SURFACE MOUNTING (E.G. ON TAKE COVER)



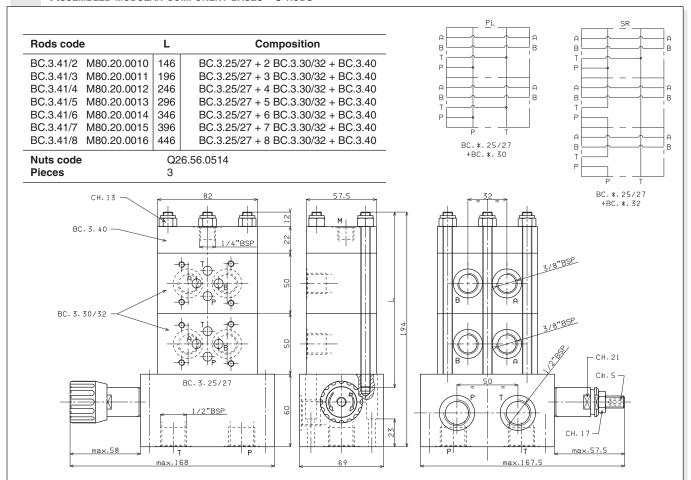

#### BS.3.W...




#### BC.3.25/27 P/T REAR AND SIDE CONNECTORS 1/2" BSP- 3 RODS



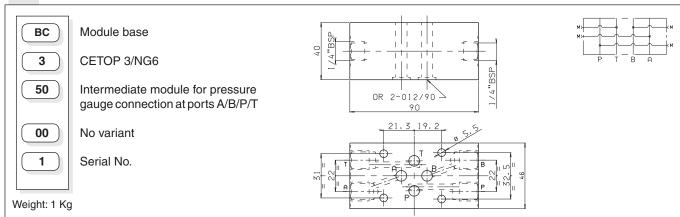
#### BC.3.30/32 - 3 RODS



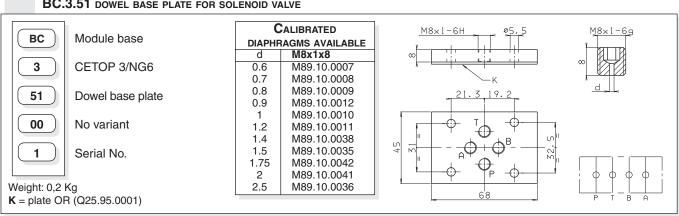

#### BC.3.40 - 3 RODS



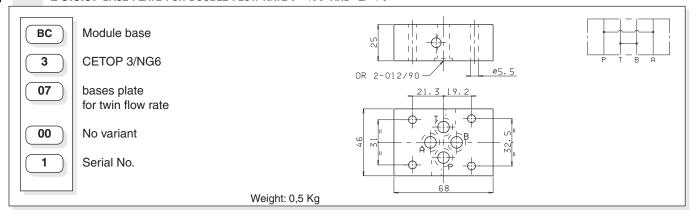
7


#### ASSEMBLED MODULAR COMPONENT BASES - 3 RODS

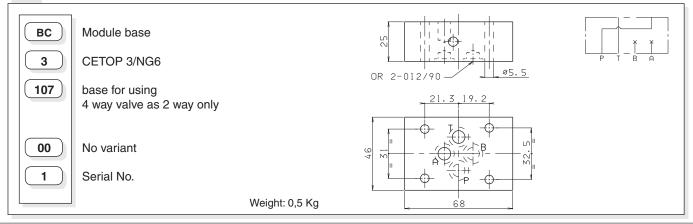



- For series connection the last block high up should be connected in parallel (BC.3.30)
- Single components should be ordered separately
- The minimum permissible setting pressure depending on the spring: see cartridge valve type CMP.10... Chapter VII page 30

#### BC.3.41/\* RODS FOR MODULAR ASSEMBLY


| Rod code                                           | Pieces | L                 | Composition                                                             | ¥            |
|----------------------------------------------------|--------|-------------------|-------------------------------------------------------------------------|--------------|
| 3C.3.41/2.00.1<br>3C.3.41/3.00.1<br>3C.3.41/4.00.1 | 3      | 146<br>196<br>246 | for 2 solenoid valves<br>for 3 solenoid valves<br>for 4 solenoid valves | m 12 15      |
| 3C.3.41/5.00.1<br>3C.3.41/6.00.1                   | 3      | 296<br>346        | for 5 solenoid valves<br>for 6 solenoid valves                          | W L L        |
| 3C.3.41/7.00.1<br>3C.3.41/8.00.1                   | -      | 396<br>446        | for 7 solenoid valves<br>for 8 solenoid valves                          | <del>-</del> |




#### BC.3.51 DOWEL BASE PLATE FOR SOLENOID VALVE

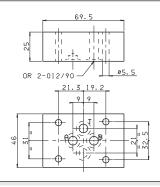


#### BC.3.07 base plate for double flow rate $P \rightarrow A$ and $B \rightarrow T$



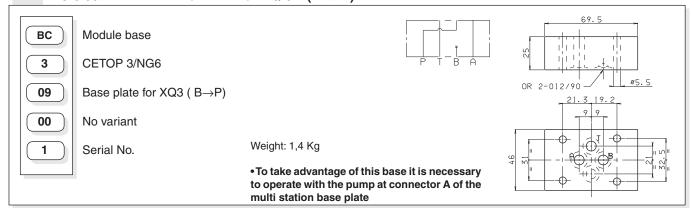
#### BC.3.107 BASE PLATE FOR USING 4 WAY VALVE AS 2 WAY ONLY



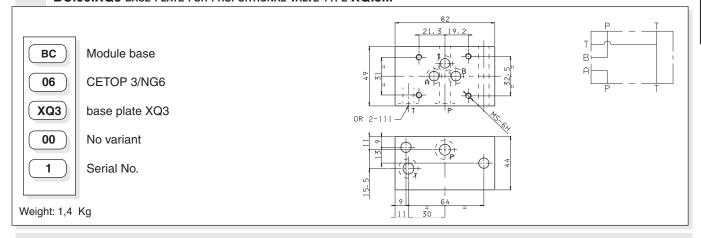



Base plate for XQ3 ( P→A)

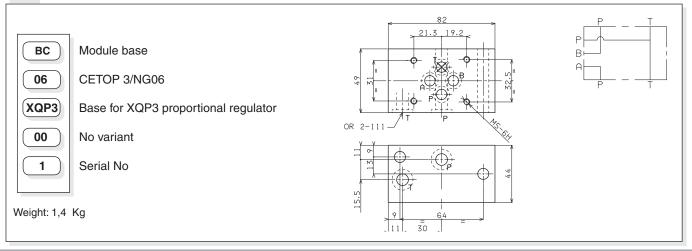
00 No variant

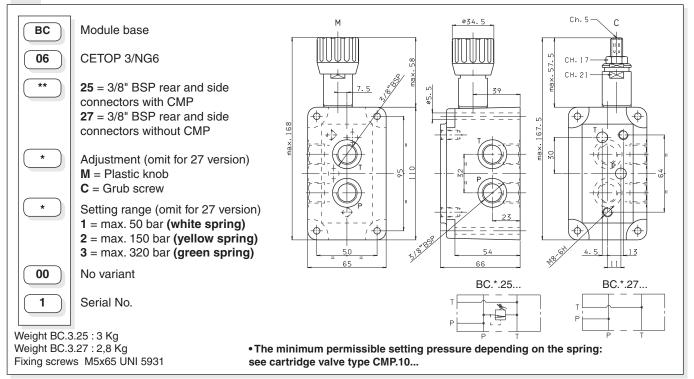

1

Serial No.

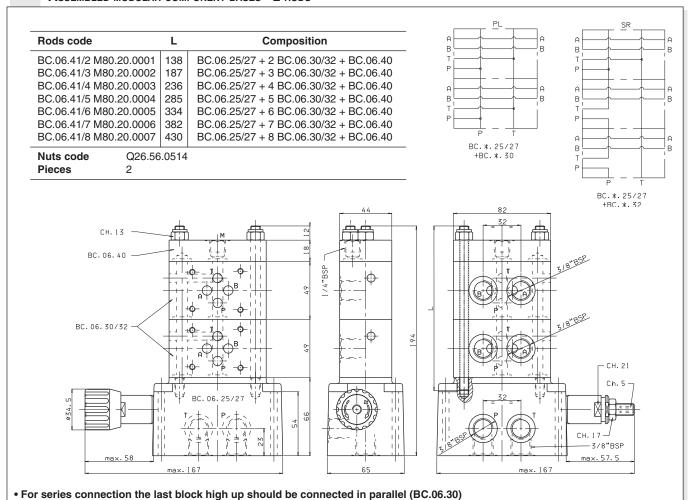



Weight: 1,5 Kg


#### BC.3.09 INTERMEDIATE BASE PLATE FOR XQ.3... (B ightarrow P)




#### BC.06.XQ3 BASE PLATE FOR PROPORTIONAL VALVE TYPE XQ.3...

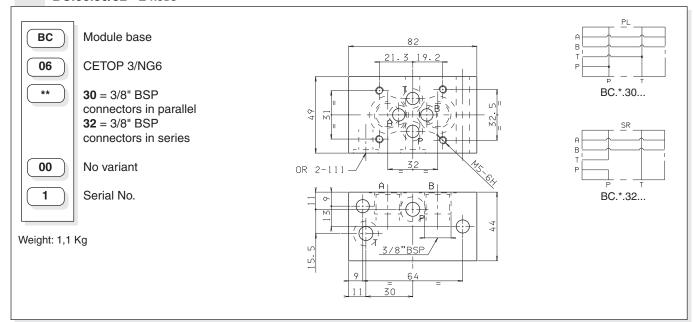



#### BC.06.XQP3 BASE PLATE FOR PROPORTIONAL REGULATOR TYPE XQP.3...

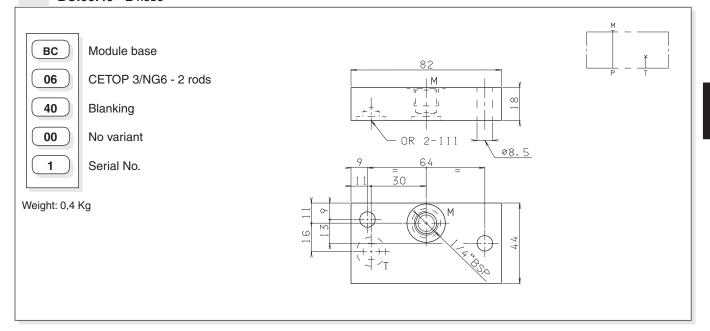




#### ASSEMBLED MODULAR COMPONENT BASES - 2 RODS

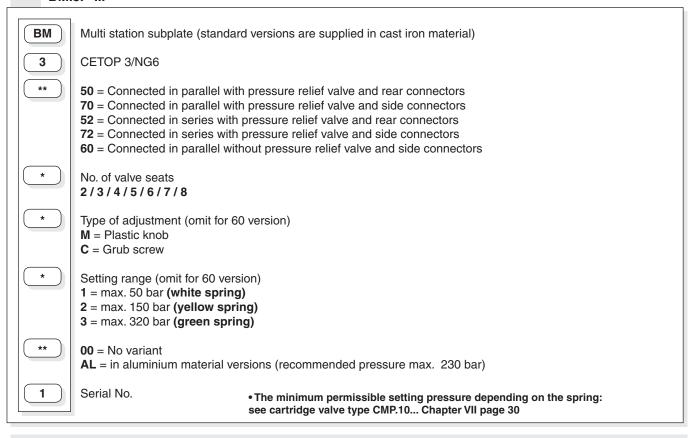



File: BC06001 E


Single components should be ordered separately

• The minimum permissible setting range depending on the spring: see cartridge valve type CMP.10... Chapter VII page 30

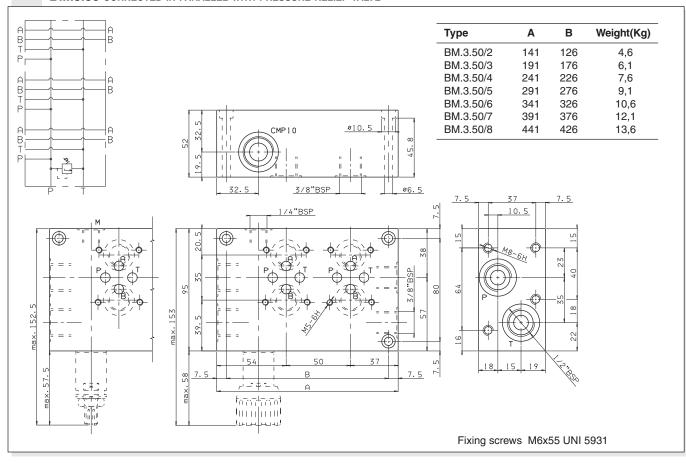
#### BC.06.30/32 - 2 RODS




#### BC.06.40 - 2 RODS



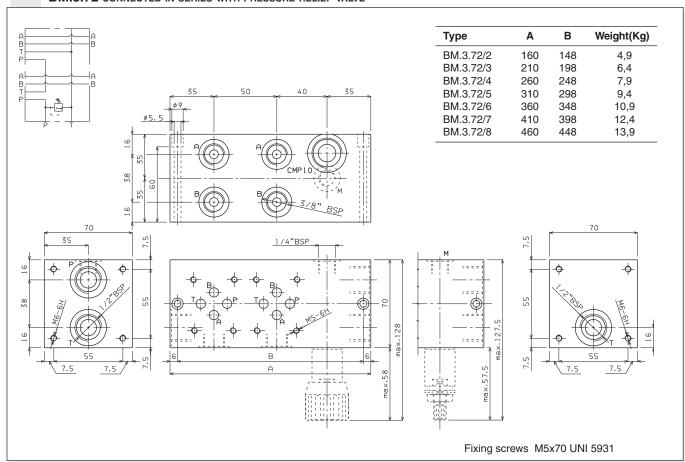
#### BC.06.41/\* RODS FOR MODULAR ASSEMBLY


| 69<br>-8<br>W |  |
|---------------|--|



#### BM.3.60 CONNECTED IN PARALLEL WITHOUT PRESSURE RELIEF VALVE

| Туре                   | Α          | В                  | Weight(Kg)  |
|------------------------|------------|--------------------|-------------|
| BM.3.60/2<br>BM.3.60/3 | 120<br>170 | 108<br>158         | 3,6         |
| BM.3.60/4              | 220        | 208                | 5,1<br>6,7  |
| BM.3.60/5              | 270        | 258                | 8.2         |
| BM.3.60/6              | 320        | 308                | 9,7         |
| BM.3.60/7              | 370<br>420 | 358<br>408         | 11,2        |
| BM.3.60/8              | 420        | 408                | 12,6        |
|                        |            |                    |             |
| A B B                  |            |                    |             |
| P                      |            |                    |             |
| A B B                  |            |                    |             |
| P                      |            |                    |             |
| A A B                  |            |                    |             |
| B<br>T<br>P            |            |                    |             |
|                        |            | <b> </b>           | 70          |
| PT                     |            | <del>&lt; 35</del> | <b>→</b>    |
|                        |            | F                  |             |
|                        | 9          | φ 7                | ¢           |
|                        |            | 7                  | J. 3        |
|                        | 28         | IJ                 | 1000        |
|                        | 177        | W6-6H              | X           |
|                        | <u> </u>   | +                  | ((2)))      |
|                        | 9          | - <b>∳</b> - ⊤     |             |
|                        | 1          | i T                | 55          |
|                        | _          | 7.5                | <del></del> |
|                        | · –        |                    | > 7         |
| xing screws M5x        | 70 UNI     | l 5931             |             |


#### BM.3.50 CONNECTED IN PARALLEL WITH PRESSURE RELIEF VALVE



#### BM.3.70 CONNECTED IN PARALLEL WITH PRESSURE RELIEF VALVE



#### BM.3.72 CONNECTED IN SERIES WITH PRESSURE RELIEF VALVE



7

BS. \*. 01

#### **CETOP 5 SUBPLATES**

BS.5.01 / BS.5.0\* Ch. VII PAGE 19

BS.5.12... / BS.5.13... BS.5.14... / BS.5.15...

Ch. VII PAGE 20

BS.5.16... / BS.5.17...

BS.5.3... CH. VII PAGE 21 BS.5.30/31... CH. VII PAGE 22

BS.VMP.20... / BS.5.29...

CH. VII PAGE 23

BC.5.36/28... Ch. VII page 24

BC.5.41/\*... / BC.5.40...

Ch. VII PAGE 25

BC.5.30/32... / BC.5.50... / BC.5.51...

CH. VII PAGE 26

BC.5.07... / BC.5.107...

BC.5.3A... / BC.10.06...

CH. VII PAGE 27

BM.5.\*\*... / BM.5.50...

CH. VII PAGE 28

BM.5.60... / BM.5.70...

BM.5.80... Ch. VII PAGE 29

CMP.20... BFP CARTRIDGE CATALOGUE

CMP.30... BFP CARTRIDGE CATALOGUE

#### BS.5... SINGLE STATION SUBPLATE

#### BS.5.01...

BS Single

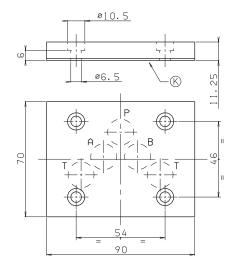
5

01

00

1

Single subplate (blanking)


CETOP 5/NG10

P/T/A/B closed

No variant

Serial No.

 Pay attention please, use these subplate in applications at slow pressure (P max. 150 bar dynamic)



Weight: 0,5 Kg

Fixing screws M6x15 UNI 5931

**K** = plate OR (Q25.95.0002)

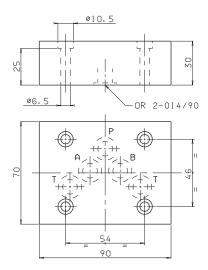
#### BS.5.\*\*...

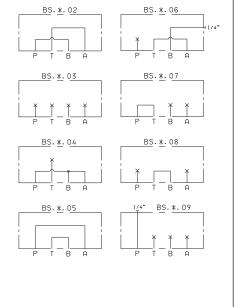
BS

Single subplate (blanking)

02/03/04/05/06/07/08/09

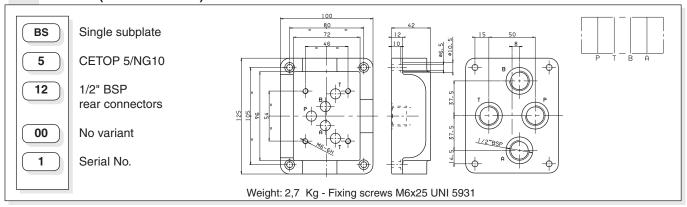
5


CETOP 5/NG10

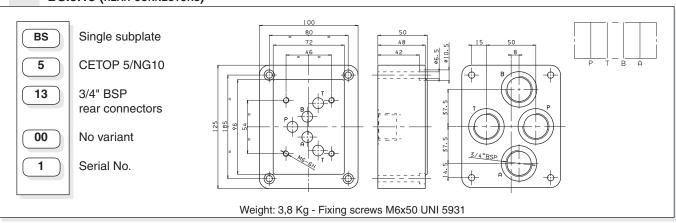

\*\* OO

1

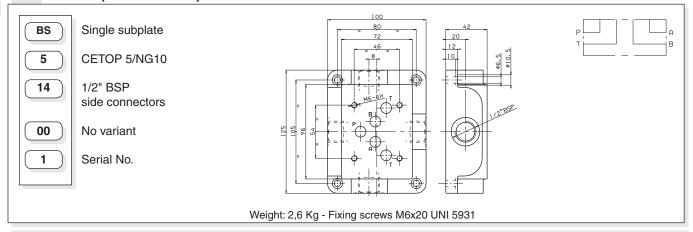
No variant


Serial No.

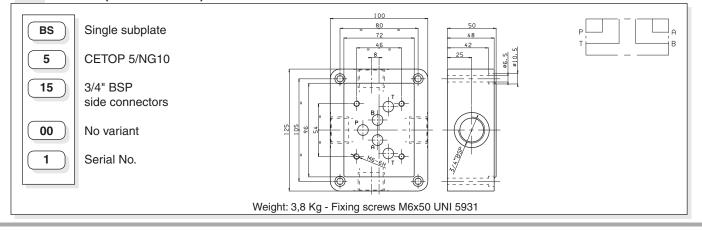




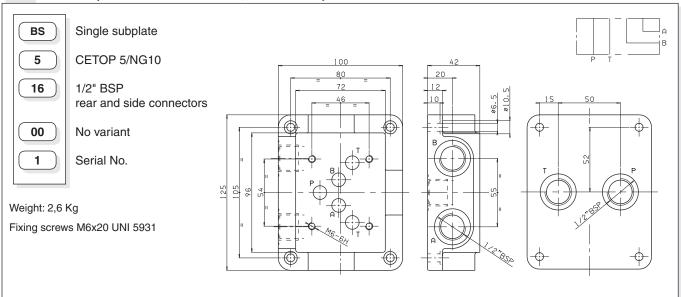

Weight: 1,2 Kg


Fixing screws M6x35 UNI 5931

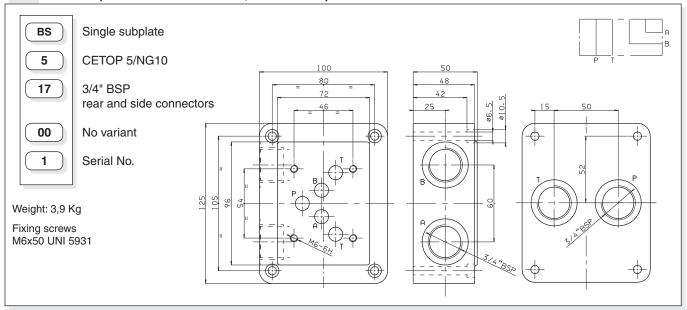



#### **BS.5.13** (REAR CONNECTORS)

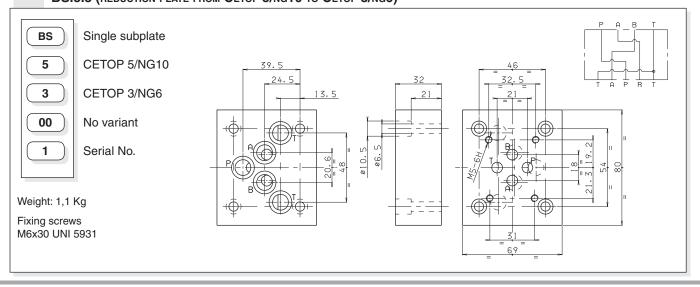



#### **BS.5.14** (SIDE CONNECTORS)

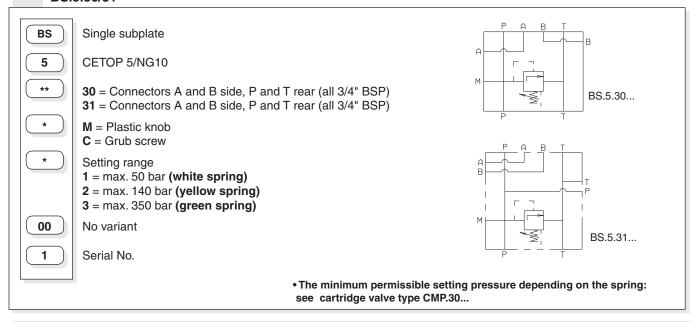



#### **BS.5.15** (SIDE CONNECTORS)

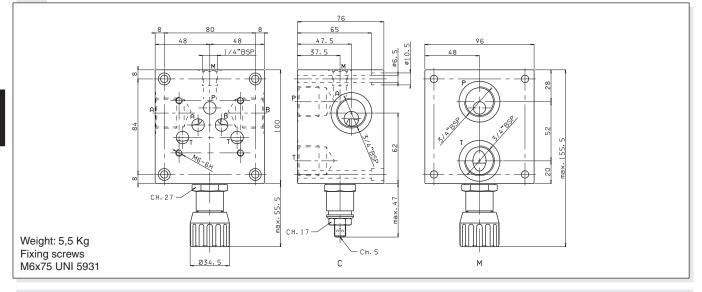



#### BS.5.16 (CONNECTORS SIDE A AND B, REAR P AND T)

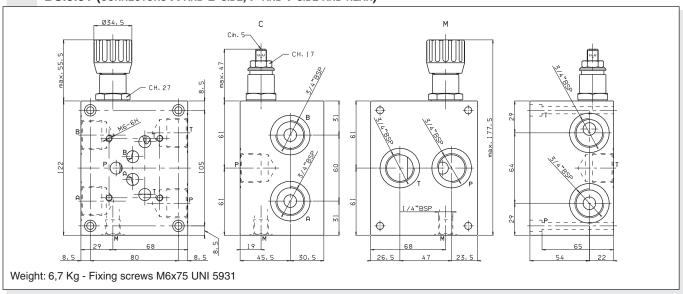



#### BS.5.17 (CONNECTORS SIDE A AND B, REAR P AND T)

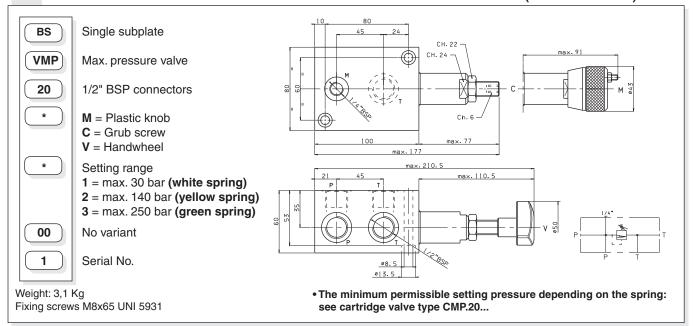



#### BS.5.3 (REDUCTION PLATE FROM CETOP 5/Ng10 TO CETOP 3/Ng6)




#### BS.5.30/31

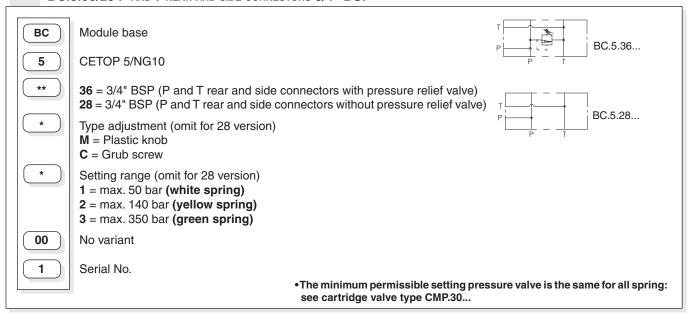



#### BS.5.30 (CONNECTORS A AND B SIDE, P AND T REAR)

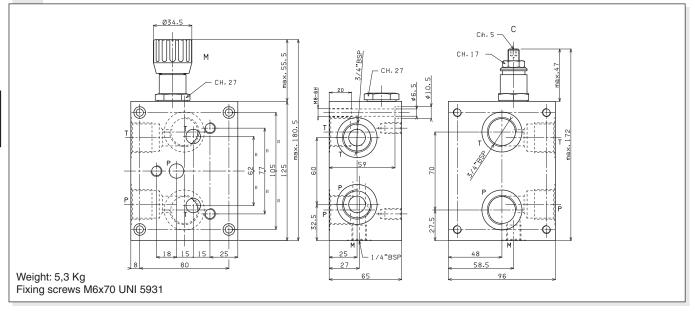


#### BS.5.31 (CONNECTORS A AND B SIDE, P AND T SIDE AND REAR)

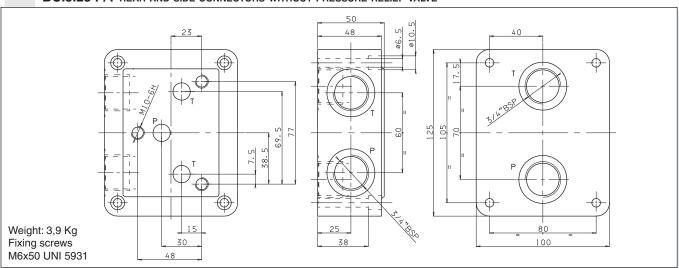



#### BS.VMP.20 SINGLE STATION SUBPLATE WITH MAX. PRESSURE VALVE FOR SURFACE MOUNTING (E.G. ON TANK COVER)

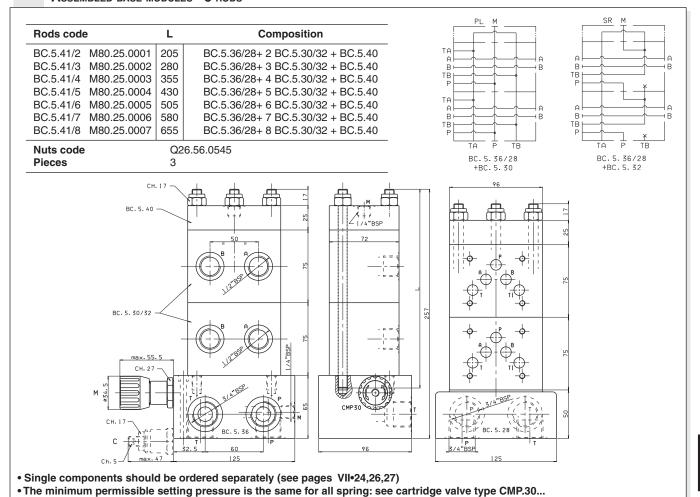



#### BS.5.29 SINGLE STATION SUBPLATE WITH MAX. PRESSURE VALVE FOR AD.5.1...




#### BC.5.36/28 P AND T REAR AND SIDE CONNECTORS 3/4" BSP

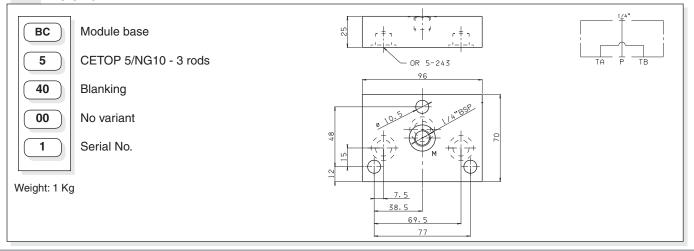



#### BC.5.36 P/T REAR AND SIDE CONNECTORS WITH PRESSURE RELIEF VALVE



#### BC.5.28 P/T REAR AND SIDE CONNECTORS WITHOUT PRESSURE RELIEF VALVE




#### ASSEMBLED BASE MODULES - 3 RODS



#### BC.5.41/\* RODS FOR MODULAR ASSEMBLIES

| Rods code                                                                                                                                      | Pieces                          | L                                             | Composition                                                                                                                                                          | ν         |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| BC.5.41/2.00.1<br>BC.5.41/3.00.1<br>BC.5.41/4.00.1<br>BC.5.41/5.00.1<br>BC.5.41/6.00.1<br>BC.5.41/7.00.1<br>BC.5.41/8.00.1<br>Tightening torgu | 3<br>3<br>3<br>3<br>3<br>3<br>3 | 205<br>280<br>355<br>430<br>505<br>580<br>655 | for 2 solenoid valve<br>for 3 solenoid valve<br>for 4 solenoid valve<br>for 5 solenoid valve<br>for 6 solenoid valve<br>for 7 solenoid valve<br>for 8 solenoid valve | H 15 18 5 |

#### BC.5.40...



Module base

5

CETOP 5/NG10 - 3 rods

\*\*

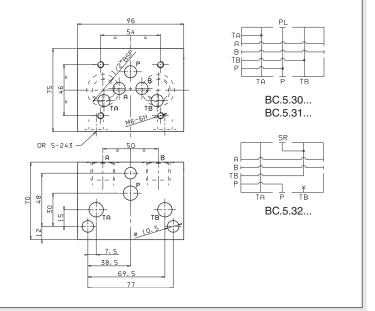
30 = 1/2" BSP connectors in parallel **31** = 3/4" BSP

connectors in parallel **32** = 1/2" BSP

connectors in series

\*\*

**00** = No variant


AI = A and B rear connector

**AS** = A and B upper connectors

Serial No.

Weight: 3 Kg

1



#### BC.5.50 INTERMEDIATE MODULE FOR PRESSURE GAUGE

вс

Module base

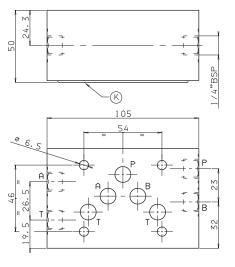
5

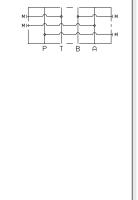
CETOP 5/NG10

50

Intermediate module for pressure gauge connection at ports A/B/P/T

00


No variant


1

Serial No.

Weight: 2,3 Kg

**K** = plate OR (Q25.95.0002)





#### BC.5.51 DOWEL PLATE FOR SOLENOID VALVE

вс

Module base

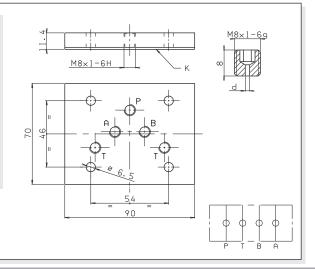
5

CETOP 5/NG10

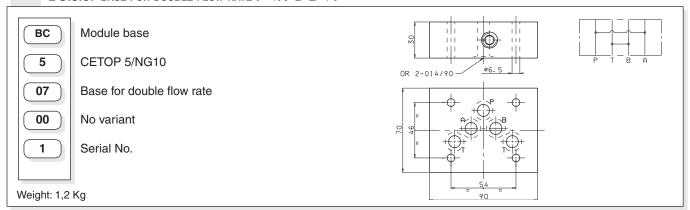
51

Subplate for solenoid valve

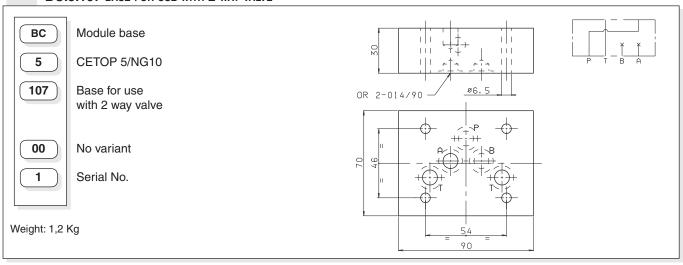
00


No variant

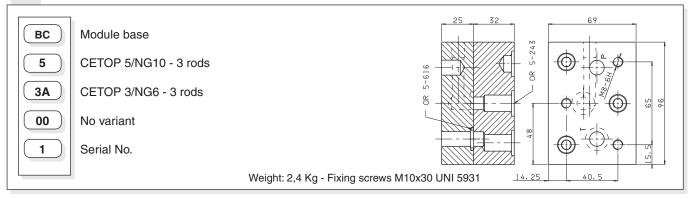
1


Serial No.

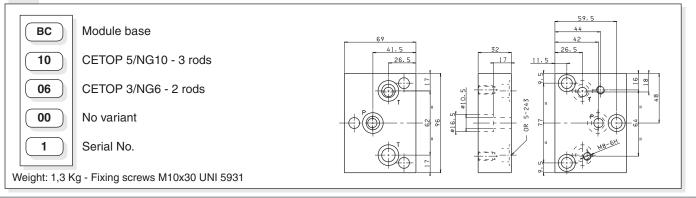
Weight: 0,5 Kg **K** = plate OR (Q25.95.0002)


| CALIBRATED           |             |  |  |  |  |
|----------------------|-------------|--|--|--|--|
| DIAPHRAGMS AVAILABLE |             |  |  |  |  |
| d                    | M8x1x8      |  |  |  |  |
| 0.6                  | M89.10.0007 |  |  |  |  |
| 0.7                  | M89.10.0008 |  |  |  |  |
| 0.8                  | M89.10.0009 |  |  |  |  |
| 0.9                  | M89.10.0012 |  |  |  |  |
| 1                    | M89.10.0010 |  |  |  |  |
| 1.2                  | M89.10.0011 |  |  |  |  |
| 1.4                  | M89.10.0038 |  |  |  |  |
| 1.5                  | M89.10.0035 |  |  |  |  |
| 1.75                 | M89.10.0042 |  |  |  |  |
| 2                    | M89.10.0041 |  |  |  |  |
| 2.5                  | M89.10.0036 |  |  |  |  |
|                      |             |  |  |  |  |




### BC.5.07 base for double flow rate $P \rightarrow A$ e $B \rightarrow T$




### BC.5.107 BASE FOR USE WITH 2 WAY VALVE



### BC.5.3A REDUCTION BASE FROM BC.5... TO BC.3...



### BC.10.06 REDUCTION BASE FROM BC.5... TO BC.06...



5

\*

\*

\*

\*\*

1

**BM** Multi station subplate (standard versions are supplied in cast iron material)

CETOP 5/NG10

**50** = Connected in parallel with pressure relief valve and rear connectors

**60** = Connected in parallel without pressure relief valve and side connectors

70 = Connected in parallel with pressure relief valve and 3/4" BSP P/T connectors and 1/2" BSP side A/B

80 = Connected in parallel with pressure relief valve and 1" BSP P/T connectors and 3/4" BSP side A/B

No. of valves seats (for BM.5.80... max 6))

2/3/4/5/6/7/8

Type of adjustment (omit for 60 version)

M = Plastic knob

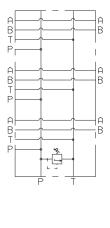
C = Grub screw

Setting range (omit for 60 version)

1 = max. 50 bar (white spring)

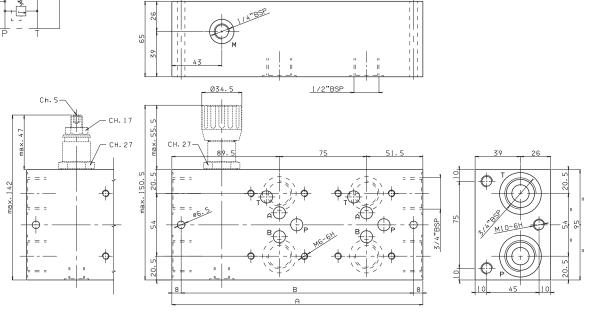
2 = max. 140 bar (yellow spring)

3 = max. 350 bar (green spring)

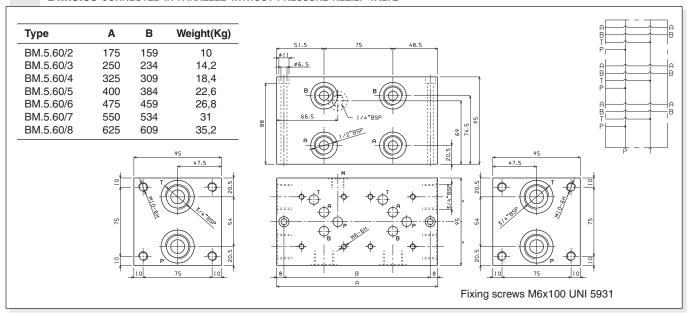

00 = No variant

AL = in aluminium material (only for BM560 and BM570 versions), recommended pressure max. 230 bar

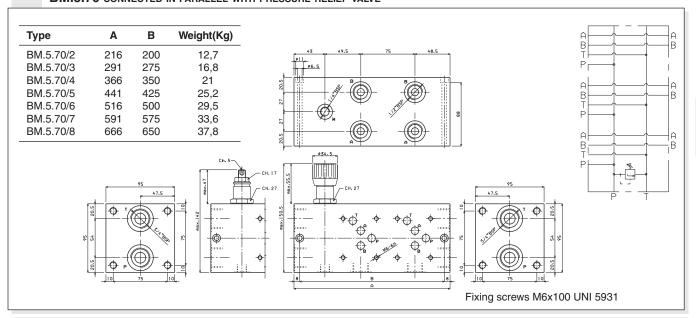
Serial No.


• The minimum permissible setting pressure is the same for all spring: see cartridge valve type CMP.30...

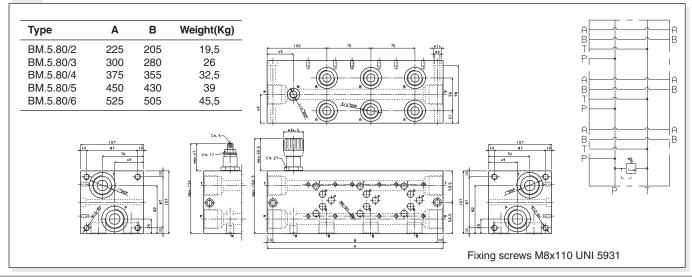
### BM.5.50 CONNECTED IN PARALLEL WITH PRESSURE RELIEF VALVE




| Туре      | Α   | В   | Weight(Kg) |
|-----------|-----|-----|------------|
| BM.5.50/2 | 216 | 200 | 8,5        |
| BM.5.50/3 | 291 | 275 | 11,3       |
| BM.5.50/4 | 366 | 350 | 14         |
| BM.5.50/5 | 441 | 425 | 16,8       |
| BM.5.50/6 | 516 | 500 | 19,5       |
| BM.5.50/7 | 591 | 575 | 22,3       |
| BM.5.50/8 | 666 | 650 | 25         |
|           |     |     |            |


Fixing screws M6x75 UNI 5931




### BM.5.60 CONNECTED IN PARALLEL WITHOUT PRESSURE RELIEF VALVE



BM.5.70 CONNECTED IN PARALLEL WITH PRESSURE RELIEF VALVE



BM.5.80 CONNECTED IN PARALLEL WITH PRESSURE RELIEF VALVE



### CMP.10...

### CMP.10... DIRECT OPERATION **MAXIMUM PRESSURE VALVES**

এদ brevini

The direct acting relief valve limits | the pressure in a hydraulic circuit. It raises the safety level by making it impossible for the plant operators to set a higher pressure rating, than that specified in the catalogue. This is limited by a pack spring with a mechanical stop, which prevents temporary P closures caused by pressure peaks.

It has a galvanised steel body. The guided ball poppet is in tempered and ground steel.

Max. operating pressure 320 bar Setting ranges: Spring 0 max. 15 bar Spring 1 max. 50 bar max. 150 bar Spring 2 Spring 3 max. 320 bar Max. flow 40 l/min Hydraulic fluids Mineral oils DIN 51524 Fluid viscosity 10 ÷ 500 mm<sup>2</sup>/s Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C Max. contamination level class 10 in accordance with NAS 1638 with filter B<sub>25</sub>≥75 0,Ž Kg Weight Tightening torque 60 ÷ 70 Nm (6 ÷ 7 Kgm) • The minimum permissible setting pressure

depending on the screw: see curves below

### **O**RDERING CODE

CMP

Max. pressure cartridge

10

Size (M24 x 2)

Type of adjustment

M = Plastic knob

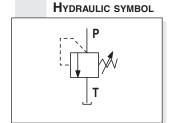
C = Grub screw

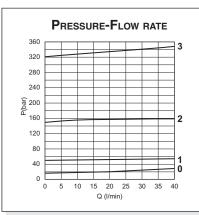
V = Handwheel

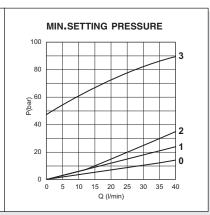
Setting ranges

0 = max. 15 bar (orange spring)

1 = max. 50 bar (white spring)


2 = max. 150 bar (yellow spring)


3 = max. 320 bar (green spring)


2

00 = No variant

V1 = Viton Serial No.








0 = CMP10.0.. - 1 = CMP10.1.. - 2 = CMP10.2.. - 3 = CMP10.3..Fluid used: mineral based oil with viscosity 32 mm<sup>2</sup>/s at 40°C.

### **OVERALL DIMENSIONS**



00012008

**S**EAT DIMENSIONS 012 max. 10.08 A

Valve seat plug code R78.30.0564

File: CMP10002 E

Spare seals kit

### **A**BBREVIATIONS ΑP HIGH PRESSURE CONNECTION AS Phase Lag (DEGREES) BP LOW PRESSURE CONNECTION STROKE (MM) С CH ACROSS FLATS Сн INTERNAL ACROSS FLATS DA AMPLITUDE DECAY (DB) DΡ DIFFERENTIAL PRESSURE (BAR) F FORCE (N) **l**% INPUT CURRENT (A) M MANOMETER CONNECTION NG KNOB TURNS OR SEAL RING Р LOAD PRESSURE (BAR) **PARBAK** PARBAK RING PL Parallel connection $\mathbf{P}_{\mathsf{R}}$ REDUCED PRESSURE (BAR) Q FLOW (L/MIN) $\mathbf{Q}_{\mathsf{P}}$ PUMP FLOW (L/MIN) SE ELASTIC PIN SF Ball SR SERIES CONNECTION X **PILOTING** Υ DRAINAGE

### PROPORTIONAL VALVES



| XD.2.A / XD.2.C             | Ch. VIII page 2                         |
|-----------------------------|-----------------------------------------|
|                             | OH. VIII PAGE Z                         |
| XD.3.A / XD.3.C             | Ch. VIII page 4                         |
| D15P PROPORTIONAL SOLENOIS  | DS                                      |
|                             | Ch. VIII PAGE 5                         |
| XDP.3.A / XDP.3.C           |                                         |
|                             | CH. VIII PAGE 6                         |
| D15P Proportional Solenoii  | DS                                      |
|                             | Ch. VIII PAGE 7                         |
| VDD5 A /VDD5 O              | On. VIII PAGE 7                         |
| XDP.5.A / XDP.5.C           |                                         |
|                             | Ch. VIII PAGE 8                         |
| D19P Proportional Solenoii  | DS                                      |
|                             | Ch. VIII PAGE 9                         |
| XDC.3 SERIE 2               | J                                       |
| ADO.S SERIE Z               | 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |
|                             | Ch. VIII PAGE 10                        |
| PROPORTIONAL SOLENOIDS      |                                         |
|                             | Ch. VIII PAGE 11                        |
| XECV.3                      |                                         |
| ALO V.O                     | 0 \/!!! 10                              |
|                             | Ch. VIII PAGE 12                        |
| XEPV.3                      |                                         |
|                             | CH. VIII PAGE 15                        |
| AM.3.H                      |                                         |
|                             | Ch. VIII PAGE 18                        |
| AAA 5 11                    | On. VIII FAGE 10                        |
| AM.5.H                      |                                         |
|                             | Ch. VIII PAGE 19                        |
| XQ.3                        |                                         |
|                             | Ch. VIII PAGE 20                        |
| D15P PROPORTIONAL SOLENOIS  |                                         |
| DISI I NOPORTIONAL SULENOIS |                                         |
|                             | Ch. VIII PAGE 21                        |
| XQP.3.                      |                                         |
|                             | Ch. VIII PAGE 22                        |
| D15P PROPORTIONAL SOLENOIS  | DS                                      |
| 2 . S. THOLOMICONE SOLENOM  |                                         |
| V05-                        | Ch. VIII PAGE 23                        |
| XQP.5.                      |                                         |
|                             | Ch. VIII PAGE 24                        |
| D19P Proportional Solenoii  | DS                                      |
|                             | Ch. VIII page 25                        |
| VDO                         | On. VIII PAGE 23                        |
| XP.3                        |                                         |
|                             | Ch. VIII PAGE 26                        |
| AM.3.XMP                    |                                         |
|                             | Ch. VIII PAGE 28                        |
|                             | JIII VIII TAGE 20                       |





# XD.2.A... / XD.2.C... SOLENOID OPERATING PROPORTIONAL VALVES CETOP 2

এদ brevini

XD.2.A../XD.2.C.. series valves are used for controlling fluid direction and flow rate as a function of the supply current to the proportional control solenoid.

Any valve  $\Delta p$  variation causes a change in the set flow rate; however the valve itself ensure a high level internal compensation maintaining constant a regulated flow.

The XD2 cetop valve could be used for accurate proportional controls with compact sizes, reducing weights.

These valves can be also combined with Mini Powerpacks type MR/MC/FP creating compact solutions. Could be also used on a Cetop 3 interface using a reduction plate type BS32001.

| XD.2                |                   |  |
|---------------------|-------------------|--|
| STANDARD CONNECTORS | Ch. I PAGE. 20    |  |
| DC SOLENOID A09     | Ch. I PAGE. 4     |  |
| REM.S.RA            | Ch. IX PAGE. 4    |  |
| REM.D.RA            | CH. IX PAGE. 7    |  |
| CEP.S               | CH. IX PAGE. 2    |  |
| SE.3.AN21.00        | CH. IX PAGE. 11   |  |
| AM.3.H              | Ch. VIII PAGE. 18 |  |
| BS32001             | Ch. VII PAGE. 3   |  |
|                     |                   |  |

| XD.2.A.01.N | XD.2.A.03.N | XD.2.C.01.N | XD.2.C.03.N |
|-------------|-------------|-------------|-------------|
|             |             |             |             |

### **ORDERING CODE**

XD

Proportional valve

2

CETOP 2/NG04



A = Single solenoid

C = Double solenoid

\*\*

Type of spool (null position)



\*

Flow path control (see symbols table)

N = symmetrical

\*

Flow rating I/min ( $\Delta p$  5 bar)

**1** = 1.5 l/min

6 = 6 l/min

\*

Max. spool current

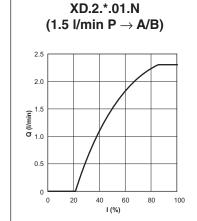
**F** = 1.4 A

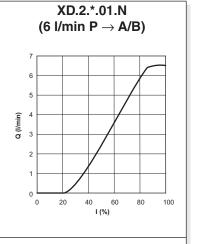
G = 0.7 A

\*\*

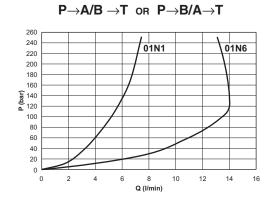
Variant: see Tab.1

1


Serial No.


### TAB.1 - VARIANTS

| TABIT VAINANTO                              |       |
|---------------------------------------------|-------|
| No variant (without connectors)             | S1(*) |
| Viton                                       | SV(*) |
| AMP Junior connection                       | AJ(*) |
| Coil with flying leads (250 mm)             | FL    |
| Coil with flying leads (130 mm) with diode  | LD    |
| Deutsch connection with bidirectional diode | CX    |


(\*) Coils with Hirschmann and AMP Junior connection supplied without connectors. The connectors can be ordered separately, ch. I page 20.

### INPUT SIGNAL CURVES - FLOW RATE





### POWER LIMITS TRANSMITTED



The fluid used was a mineral oil with a viscosity of 46 mm²/s at 40°C. The tests have been carried out at with a fluid of 40°C.

Performances shown in this catalogue are guaranteed only using a pressure compensator of 5 bar.

### **OPERATING SPECIFICATIONS**

Max. operating pressure ports P/A/B 250 bar Max. operating pressure ports T - for dynamic pressure see note (\*) 250 bar 1.5 / 6 I/min Regulated flow rate Relative duty cycle Continuous 100% ED Type of protection IP 65 See diagrams Flow rate gain Hysteresis with connection P/A/B/T  $\Delta p = 5$  bar (P/A) ≤ 13% of max. flow rate 10 ÷ 500 mm<sup>2</sup>/s Fluid viscosity Fluid temperature -20°C ÷ 75°C Max. contamination level class 8 in accordance with NAS 1638 with filter B<sub>10</sub>≥75 0.88 Kg Weight XD.2.A... (single solenoid) Weight XD.2.C... (double solenoid) 1.1 Kg Max. current (voltage) 1.4A (a 12V) 0.7A (a 24V) 21.3 Ohm Solenoid coil resistance at 25°C (77°F) 5.3 Ohm (\*) Pressure dynamic allowed for 500000 cycles

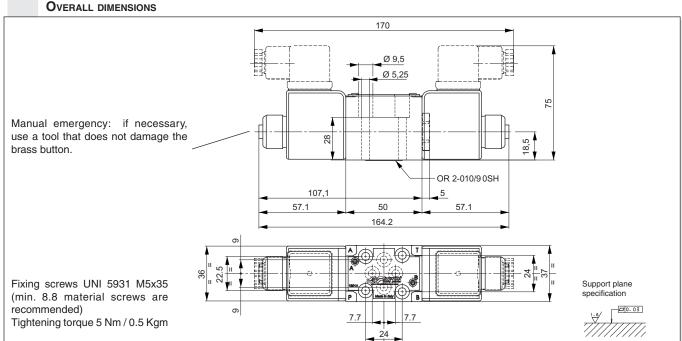
• Operating specifications are valid for fluid with 46 mm<sup>2</sup>/s viscosity at 40°C, using

### **E**LECTRONIC CONTROL UNIT

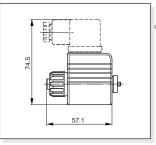
### REM.S.RA.\*.\*. and REM.D.RA.\*.\*.

Card type control for single and double solenoid. Recommended dither frequency 100 Hz.

### SE.3.AN.21.00...


EUROCARD type control for single and double solenoid

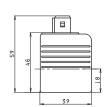
### CEP.S


Electronic amplifier plug version

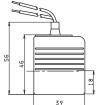
for single solenoid proportional valve (150Hz PWM frequency setting)

the specified ARON electronic control units.

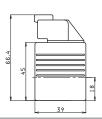








### PROPORTIONAL SOLENOID

Type of protection (in relation to connector used) IP 65 Number of cycle 18.000/h Supply tolerance ±10% Ambient temperature -30°C ÷ 60°C Duty cycle 100% ED Insulation class wire 0,215 Kg Weight


AMP JUNIOR (AJ)



FLYING LEADS (FL) LEADS + DIODE (LD)



DEUTSCH COIL + BIDIR. DIODE (CX) DT04 - 2P



File: XD2001 E

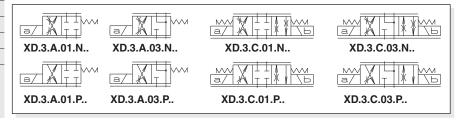
খদ brevini



# XD.3... STANDARD CONNECTORS Ch. I PAGE 20 "D15P" PROPORT. SOLENOIDS Ch. VIII PAGE 5 REM.S.RA... Ch. IX PAGE 4 REM.D.RA... Ch. IX PAGE 7 SE.3.AN21.00... Ch. IX PAGE 11 AM.3.H... Ch. VIII PAGE 18 BC.3.07... Ch. VII PAGE 12

# XD.3.A... / XD.3.C... SOLENOID OPERATING PROPORTIONAL VALVES CETOP 3

এদ brevini


XD.3.A../XD.3.C.. series valves are used for controlling fluid direction and flow rate as a function of the supply current to the proportional control solenoid.

Any valve  $\Delta p$  variation causes a change in the set flow rate; however the valve itself ensure a high level internal compensation by limiting the controlled flow rate.

To ensures a constant flow rate and reduce leakage, we recommend to use AM3H2V or AM3H3V hydrostats.

Performances shown in this catalogue are guaranteed only using 2 or 3 way modular assembly hydrostats type AM.3.H.  $\dots$ 

The shown flow rates are typical for one line operation (e.g. from P to B), while higher flow rates are obtainable by using the valve with our flow rate doubling sub-base type BC.3.07 (see diagram next page). This type of configuration extends considerably the flow rate limit.



### **ORDERING CODE**

XD

Proportional valve

3

CETOP 3/NG6

(\*)

\*\*

A = Single solenoid

C = Double solenoid

Type of spool (null position)

\*

Flow path control (see symbols table)

**N** = symmetrical

**P** = meter in

\*

Flow rating I/min (∆p 5 bar)

1 = 3 l/min

**2** = 10 l/min

3 = 15 l/min

4 = 18 l/min

\*

E = 9VDC (2.35 A)

F = 12VDC (1.76 A)

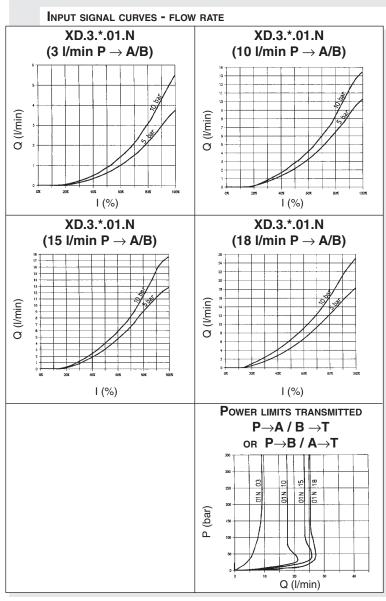
G = 24VDC (0.88 A)

\*\*

Variant (\*):

**S1** = No variant (without connectors)

**VS** = Viton


**P2** = Rotary emergency

**R5** = Rotary emergency 180°

2

Serial No.

(\*) All variants are considered without connectors. The connectors must be order separately. See Ch. I Page 20



The fluid used is a mineral based oil with a viscosity of 46 mm<sup>2</sup>/s at 40°C. The tests have been carried out at with a fluid of a 40°C.

### **OPERATING SPECIFICATIONS**

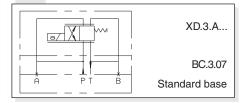
the specified ARON electronic control units.

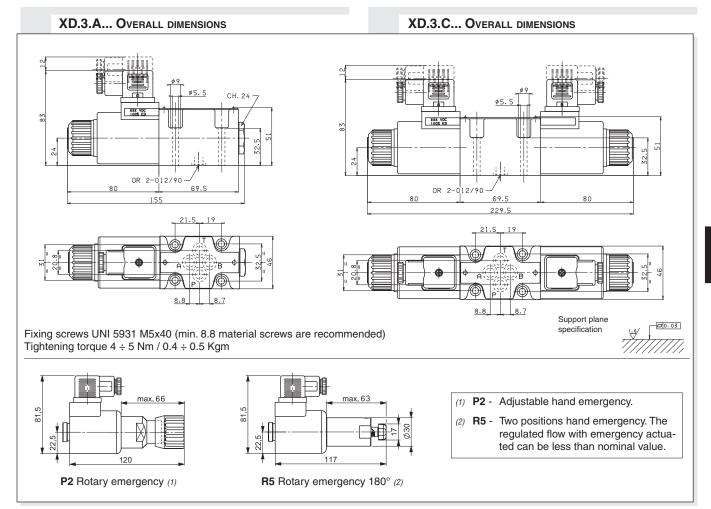
Max. operating pressure ports P/A/B 350 bar Max. operating pressure ports T - for dynamic pressure see note (\*) 250 bar Regulated flow rate 3 / 10 / 15 / 18 l/min Relative duty cycle Continuous 100% ED Type of protection IP 65 See diagrams Flow rate gain Hysteresis with connection P/A/B/T  $\Delta p = 5$  bar (P/A) ≤ 7% of max. flow rate 10 ÷ 500 mm<sup>2</sup>/s Fluid viscosity Fluid temperature -20°C ÷ 75°C Max. contamination level class 8 in accordance with NAS 1638 with filter  $\beta_{10} \ge 75$  1,5 Kg Weight XD.3.A... (single solenoid) Weight XD.3.C... (double solenoid) 1,7 Kg Type of voltage 12V 24V Max. current 2.35A 1.76 A 0.88 A Solenoid coil resistance at 25°C (77°F) 2.25 Ohm 4.0 Ohm 16.0 Ohm (\*) Pressure dynamic allowed for 2 millions of cycles. Operating specifications are valid for fluid with 46 mm<sup>2</sup>/s viscosity at 40°C, using

### **E**LECTRONIC CONTROL UNIT

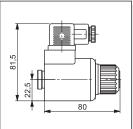
### REM.S.RA.\*.\*. and REM.D.RA.\*.\*.

Card type control for single and double solenoid. Recommended dither frequency 100 Hz.


### SE.3.AN.21.00...


EUROCARD type control for single and double solenoid

### AM.3.H.2V.P1 and AM.3.H.3V.P1


Hydrostats 2 or 3 way.

### SCHEMA FOR DOUBLE FLOW RATE









### "D15P" Proportional solenoids

### খদ brevini

Type of protection (in relation to connector used)

Duty cycle
Insulation class wire
Weight (coil)
Weight (solenoid)

IP 66

100% ED

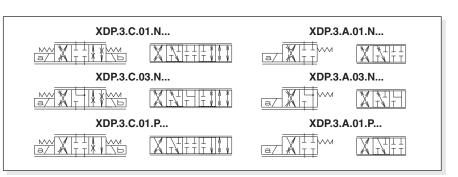
H

0,354 Kg

0,608 Kg



### XDP.3.A... / XDP.3.C ...


### Proportional directional valves open loop ## brevini

The open loop valves of series XDP... control the direction and the volume of the flow according to the feeding current to the proportional solenoid. By using a valve body equipped with increased passage channels it is possible to reach the highest capacity of its dimensions at a parity of pressure drops, (40 l/min with  $\Delta p$  of 10 bar).

Each  $\Delta p$  variation on the valve leads to the variation of the capacity which has been set, anyway the valve guarantees an high inner compensation grade and limits the adjustment capacity.

Performances shown in this catalogue are guaranteed only using 2 or 3 way modular assembly hydrostats type AM.3.H. ... By using the valve with the base for capacity doubling type BC.3.07 (see next page) a greater capacity cam be obtained.

| XDP.3                       |                  |
|-----------------------------|------------------|
| STANDARD CONNECTORS         | Ch. I PAGE 20    |
| D15P PROPORTIONAL SOLENOIDS | Ch. VIII PAGE 7  |
| REM.S.RA                    | Ch. IX PAGE 4    |
| REM.D.RA                    | Ch. IX PAGE 7    |
| SE.3.AN21.00                | Ch. IX PAGE 11   |
| AM.3.H                      | Ch. VIII PAGE 18 |
| AM.5.H                      | Ch. VIII PAGE 19 |
| BC.3.07                     | Ch. VII PAGE 12  |
|                             |                  |



### **ORDERING CODE**

**XDP** 

Open loop proportional directional valve

3

CETOP 3/NG06



- A = Single solenoid
- C = Double solenoid

Type of spool (null position)



01 = 🗆 03 =



Flow path control (see hydraulic symbols table)

- N = simmetrico
- P = in mandata (solo con cursori 01)

Flow rating I/min ( $\Delta p$  10 bar)

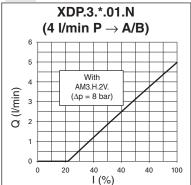
- $\mathbf{A} = 4 \text{ l/min}$ 1 = 8 l/min
- In order to reduced the unloading pressure for rated
- 2 = 15 l/min
- flow version at 40 l/min we
- 3 = 25 l/min 6 = 40 l/min ◆
- advise to use the 3 way type AM.5.H.3V... hydrostat

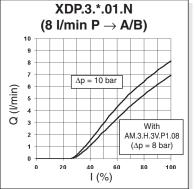
Max. current to solenoid

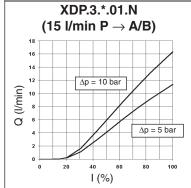
- E = 2.35 A
- F = 1.76 A
- G = 0.88 A

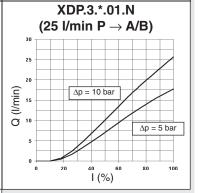
Varianti: see Table 1

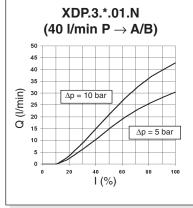
2

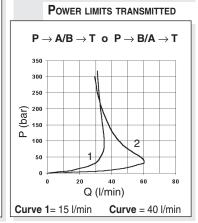

Serial No.


### TABLE 1 - VARIANTS (\*)


| No variant (without connectors) | S1 |
|---------------------------------|----|
| Viton                           | SV |
| Rotary emergency                | P2 |
| Rotary emergency 180° 180°      | R5 |


(\*) All variants are considered without connectors. The connectors must be order separately. See Ch. I Page 20


### INPUT SIGNAL CURVES - FLOW RATE














with NAS 1638 with filter  $\beta_{_{10}}\!\!\geq\!\!75$ 

1,7 Kg

### **OPERATING SPECIFICATIONS**

Max. operating pressure ports P/A/B 350 bar Max. pressure port T - for dynamic pressure see note (\*) 250 bar 8 / 15 / 25 / 40 l/min Nominal flow Continuous 100% ED Duty cycle Type of protection (depending on the connector used) IP 65 Flow rate gain See diagram Power limits curves transmitted See diagram 10 ÷ 500 mm<sup>2</sup>/s Fluid viscosity Fluid temperature -20°C ÷ 75°C Ambient temperature -20°C ÷ 70°C Max. contamination level from class 7 at 9 in accordance

Weight XDP.3.A... (single solenoid) Weight XDP.3.C... (double solenoid)

2,9 Kg Max. current 2.35A 1.76 A 0.88 A Solenoid coil resistance 25°C (77°F) 2.25 Ohm 4.0 Ohm 16.0 Ohm Hysteresis P / A / B / T with a pressure compensator AM.3.H.3V... <5% <5% <8% Response to step  $\Delta p = 5$  bar (P/A) 0 ÷ 100% 32 ms 40 ms 85 ms  $100\% \div 0$ 33 ms 33 ms 33 ms Frequency response -3db (Input signal 50% ±25% Vmax) 22Hz 12Hz

(\*) Pressure dynamic allowed for 2 millions of cycles

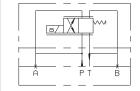
Operating specifications are valid for fluids with 46 mm<sup>2</sup>/s viscosity at 40°C, using the specified ARON electronic control units. Performance data carried out using the specified Aron power amplifier SE.3.AN... serie 1 - EUROCARD format - powered to 24V.

### AMPLIFIER UNIT AND CONTROL

### REM.S.RA.\*.\*. and REM.D.RA.\*.\*.

Electronic card control single and double proportional solenoid valve. Recommended dither frequency 100 Hz.

### SE.3.AN.21.00...


Electronic card format EUROCARD for control and double proportional solenoid valve

### AM.3.H.2V.P1 / AM.3.H.3V.P1 and AM.5.H.3V.P1 (\*)

Hydrostats 2 or 3 way

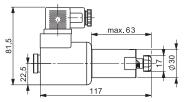
(\*) for rated flow XDP3 version at 40 l/min only

### CONFIGURATION FOR DOUBLE FLOW RATE



XDP.3.A...

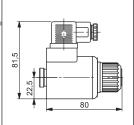
BC.3.07


Standard subplate

খদ brevini

### **OVERALL DIMENSIONS**




max. 66 P2 Rotary emergency (1)



R5 Rotary emergency 180° (2)

- (1) **P2** Adjustable hand emergency.
- (2) R5 Two positions hand emergency. The regulated flow with emergency actuated can be less than nominal value.





### "D15P" Proportional solenoids

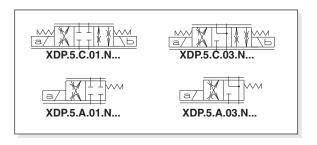
IP 66 Type of protection (in relation to connector used) Duty cycle 100% ED Insulation class wire Н 0,354 Kg Weight (coil) Weight (solenoid) 0,608 Kg ETD15P - 01/2002/e





| Ch. I PAGE 20    |
|------------------|
| Ch. VIII PAGE 9  |
| CH. IX PAGE 4    |
| CH. IX PAGE 7    |
| CH. VIII PAGE 19 |
|                  |

### XDP.5.A... / XDP.5.C ...


### Proportional directional valves open loop

The open loop valves of series XDP control the direction and the volume of the flow according to the feeding current to the proportional solenoid.

Each  $\Delta p$  variation on the valve leads to the variation of the capacity which has been set, anyway the valve guarantees an high inner compensation grade and limits the adjustment capacity.

Performances shown in this catalogue are guaranteed only using 2 or 3 way modular assembly hydrostats type AM.5.H. ... (see note below in ordering code).

**S5 variant** - This variant that consists of a solenoid chamber drainage separated from the T line and obtained on CETOP RO5 interface allows operation with up to 320 bar max. back pressure on the T line. To ensure maximum solenoid valve mounting safety and supplementary drainage, only 12.9 material fixing screws must be used with it.



### **O**RDERING CODE

XDP

Open loop proportional directional valve

5

CETOP 5/NG10

\*

A = Single solenoidC = Double solenoid

\*\*

Type of spool (null position)

N

Symmetrical flow path control (see hydraulic symbols table)

\*

Flow rating (\*) ∆p 10 bar

2 = 45 l/min

3 = 60 l/min

**5** = 100 l/min

\*

Max. current to solenoid

F = 2.5 A

G = 1.25 A

\*\*

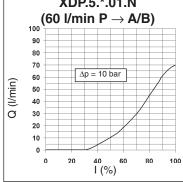
Variant (\*\*):

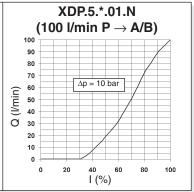
**S1** = No variant (without connectors)

SV = Viton

P2 = Rotary emergency

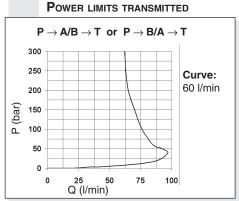
**S5** = External drainage


1


Serial No.

(\*) Guaranteed with 24Volt, 2.5Amps supply.

(\*\*) All variants are considered without connectors. The connectors must be order separately. See Ch. I Page 20


# INPUT SIGNAL CURVES - FLOW RATE XDP.5.\*.01.N





খ্যদ brevini





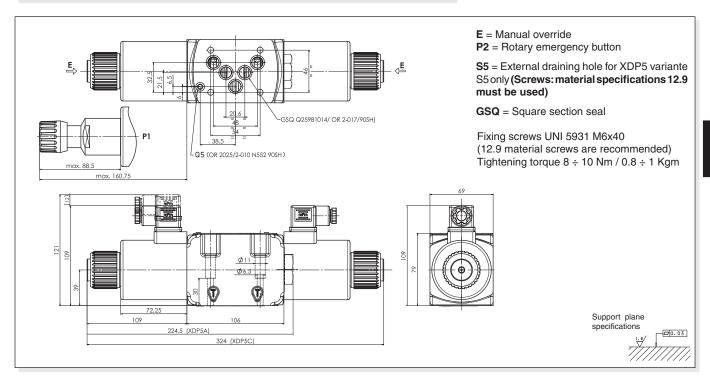
### **OPERATING SPECIFICATIONS**

| CT ENATING OF EON TOATIONS                                    |               |                              |
|---------------------------------------------------------------|---------------|------------------------------|
| Max. operating pressure ports P/A/B                           |               | 320 bar                      |
| Max. pressure port T - for dynamic pressure see note (*)      |               | 250 bar                      |
| Max. pressure port T (with external drainage - S5 variant)    |               | 320 bar                      |
| Nominal flow                                                  | 45 / 6        | 0 / 100 l/min                |
| Duty cycle                                                    | Continuo      | us 100% ED                   |
| Type of protection (depending on the connector used)          |               | IP 65                        |
| Flow rate gain                                                |               | See diagram                  |
| Power limits curves transmitted                               |               | See diagram                  |
| Fluid viscosity                                               | 10            | ÷ 500 mm²/s                  |
| Fluid temperature                                             |               | 20°C ÷ 75°C                  |
| Ambient temperature                                           |               | 20°C ÷ 70°C                  |
| Max. contamination level from class 7 at 9 in accordance with | NAS 1638 with | າ filter ິ <sub>10</sub> ≥75 |
| Weight XDP.5.A (single solenoid)                              |               | 4,97 Kg                      |
| Weight XDP.5.C (double solenoid)                              |               | 6,55 Kg                      |
| Max. current                                                  | 2.5 A         | 1.25 A                       |
| Solenoid coil resistance 20°C (68°F)                          | 2.85 Ohm      | 11.4 Ohm                     |
| Hysteresis P/A/B/T                                            |               |                              |
| with a pressure compensator AM.5.H.3V                         | <5%           | <8%                          |
| Response to step $\Delta p = 10$ bar (P/A)                    |               |                              |
| 0 ÷ 100%                                                      | 56 ms         | 118 ms                       |
| 100% ÷ 0                                                      | 32 ms         | 32 ms                        |
| Frequency response -3db (Input signal 50% ±25% Vmax)          |               |                              |
|                                                               | 10Hz          | 7Hz                          |
| (*) Pressure dynamic allowed for 2 millions of cycles         |               |                              |

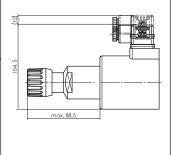
Operating specifications are valid for fluids with 46 mm<sup>2</sup>/s viscosity at 40°C, using the specified ARON electronic control units. Performance data carried out using the

specified Aron power amplifier type REM.S.RA... power supplied at 24V.

### AMPLIFIER UNIT AND CONTROL


### REM.S.RA.\*.\*. and REM.D.RA.\*.\*.

Electronic card control single and double proportional solenoid valve.


Recommended dither frequency 100 Hz.

AM.5.H.2V.P1 / AM.5.H.3V.P1( $\triangle p=10bar$ )

Hydrostats 2 or 3 way.







# "D19P" Proportional solenoids

Type of protection (in relation to connector used)

Ambient temperature

-54°C ÷ 60°C

Duty cycle

100% ED

Insulation class wire

H

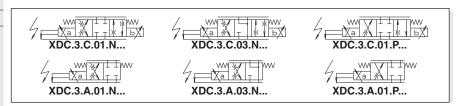
Weight

1,58 Kg

খ্যদ brevini



| XDC.3002              |                  |  |
|-----------------------|------------------|--|
| STANDARD CONNECTORS   | Ch. I PAGE 20    |  |
| PROPORTIONAL SOLENOID | Ch. VIII PAGE 11 |  |
| SE.3.AN21.RS03        | Ch. IX PAGE 13   |  |
| AM.3.H                | Ch. VIII PAGE 18 |  |
| AM.5.H                | Ch. VIII PAGE 19 |  |
| BC.3.07               | Ch. VII PAGE 12  |  |


# XDC.3... PROPORTIONAL DIRECTIONAL VALVES CLOSED LOOP POSITION CONTROL

খ্যদ brevini

The valves XDC serie 2 control the direction and the volume of the flow according to the feeding current to the proportional solenoid. The position transducer type LDVT (inductive position transducer) monitors the actual position of the spool.

In the electronic card (type SE.AN.21.RS...serie 3) the error between the actual position and the reference signal is used to obtain a greater precision of the spool positioning, reducing also considerably the hysteresis and the repeatibility error of the valve. For a more accurate flow control, 2 or 3-way pressure compensators modular plate design are available.

The shown flow rates are typical for one line operation (e.g. from P to B). By using the valve with the base for capacity doubling type BC.3.07 greater capacity can be obtained.



Registered mark for industrial environment with reference to the electromagnetic compatibility.

European norms: EN50082-2 - general safety norm - industrial environment; EN50081-1 -emission general norm - residential environment

### **O**RDERING CODE

XDC

Proportional directional valve with closed loop position control



CETOP 3/NG6



\*\*

A = Single solenoid

**C** = Double solenoid

Type of spool (null position)

$$\mathbf{01} = \begin{bmatrix} \bot & \bot \\ \top & \top \end{bmatrix} \quad \mathbf{03} = \begin{bmatrix} \bot \\ \top \end{bmatrix}$$

\*

Flow path control (see hydraulic symbols

N = symmetrical

P = meter in (only with 01 spool)

Flow rating I/min (∆p 10 bar)

A = 4 l/min 1 = 8 l/min

In order to reduced the unloading pressure for rated flow version at 40 l/min we

**2** = 15 l/min **3** = 25 l/min

advise to use the 3 way type

**6** = 40 l/min **←** 

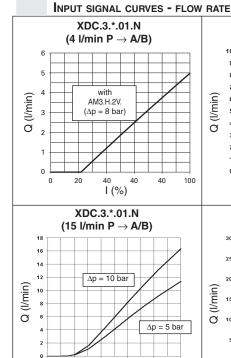
AM.5.H.3V... hydrostat.

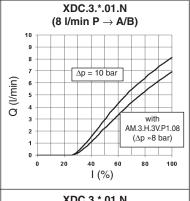
F

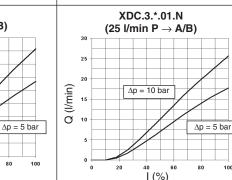
Max. current at solenoid: 1.76 A

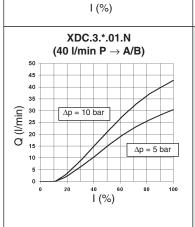
**S1** 

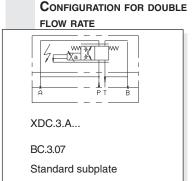
No variant (without connectors)\*


2


Serial No.


### Notice:


in order to control the valve XDC3...serie 2 it need to use the electronic card SE.AN.21.RS...serie 3, in exclusive way (See Ch. IX).


(\*) All variants are considered without connectors. The connectors must be order separately. See Ch. I Page 20







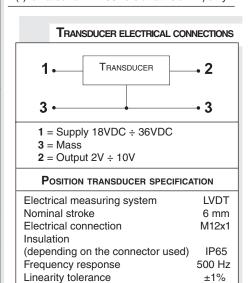




### **O**PERATING SPECIFICATIONS OF VALVE WITH TRANSDUCER

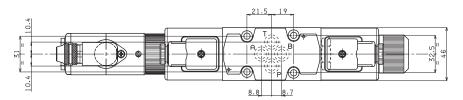
| Max. operating pressure ports P/A/B 350 bar Dynamic pressure port T 210 bar Static pressure port T 210 bar Nominal flow 8 / 15 / 25 / 40 l/min Duty cycle Continuous 100% ED Type of protection (depending on the connectors used) IP 65 Performance curves See diagrams Fluid viscosity 10 ÷ 500 mm²/s Fluid temperature -20°C ÷ 75°C Ambient temperature -20°C ÷ 70°C Max. contamination level class 7 to 9 in accordance to NAS 1638 with filter $B_{10} \ge 75$ |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Weight XDC.3.A (single solenoid) 1,94 Kg Weight XDC.3.C (double solenoid) 2,55 Kg                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| $\begin{array}{ll} \text{Max. current} & \textbf{1.76 A} \\ \text{Solenoid coil resistance at 20°C (68°F)} & 4.55 \ \Omega \\ \text{Solenoid coil resistance when hot} & 7.34 \ \Omega \\ \text{Hysteresis P/A/B/T with pressure compensator AM.3.H.3V} & <1\% \\ \end{array}$                                                                                                                                                                                      |  |  |
| Transient function with stepped electrical input signals $\Delta p = 5$ bar (P/A) $0 \div 100\%$ 65 ms $100\% \div 0$ 75 ms Repeatibility <0,5% Frequency response -3db (Input signal $\pm 25\%$ Vmax) 10 Hz                                                                                                                                                                                                                                                        |  |  |
| Insulation class wire H Weight of solenoid 0,6 Kg                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Operating specifications are valid for fluids with 46 mm²/s viscosity at 40°C, using the                                                                                                                                                                                                                                                                                                                                                                            |  |  |

SE3AN21RS... serie 3 ARON electronic control unit powered to 24V.


### **A**MPLIFIER UNIT AND CONTROL

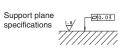
**SE.3.AN.21.RS...serie 3** - Electronic card EU-ROCARD format for control of the proportional valve equipped with transducer

### AM.3.H.2V.P1 / AM.3.H.3V.P1 AM.5.H.3V.P1 (\*)

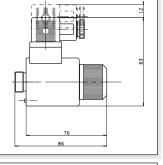

Hydrostats 2 or 3 way

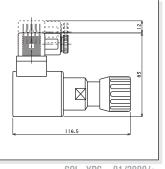
(\*) for rated flow XDC3 version at 40 l/min ) only




# PROPORTIONAL SOLENOID

### 99.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5





Fixing screws UNI 5931 M5x25 (min. 8.8 material screws are recommended) Tightening torque 4  $\div$  5 Nm / 0.4  $\div$  0.5 Kgm

**OVERALL DIMENSIONS** 









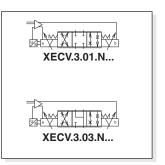
SOL\_XDC - 01/2000/e





|         | XECV.3           |
|---------|------------------|
| AM.3.H  | Ch. VIII PAGE 18 |
| AM.5.H  | Ch. VIII PAGE 19 |
| BC.3.07 | Ch. VII PAGE 12  |
|         |                  |
|         |                  |

### XECV.3... CLOSED LOOP PROPORTIONAL VALVE WITH ELECTRONIC ON BOARD


খ্যদ brevini

The proportional directional valves XECV are designed as direct operated components for subplate mounting. They are actuated by means of proportional solenoids with central thread and removable coil. The position of the spool is controlled by integrated control electronics and LVDT linear transducer sensor.

### Features:

- Integrated control electronics
- Setup parameters by CAN interface
- Current compensation, gain current and ramps setting
- · Monitoring of the valve by real time scope interface

European norms: EN 61000 - ElectroMagnetic Compatibility (EMC) - industrial environment



### **O**RDERING CODE

XECV

Position loop proportional valve with integrated electronics 24Vdc

3

CETOP 3/NG6

Type of spool

spool with P, A, B and T ports, closed

spool with P port closed, and A, B, T ports connected

Symmetrical flow control

Ν

Flow rating at ∆p 8bar

- 0 = 4 l/min
  - 1 = 8 I/min
  - 2 = 15 l/min
  - 3 = 25 l/min
  - 6 = 36 l/min (we advise to use the hydrostat AM5H3VP108)

S

CAN bus communication S = standard ARON

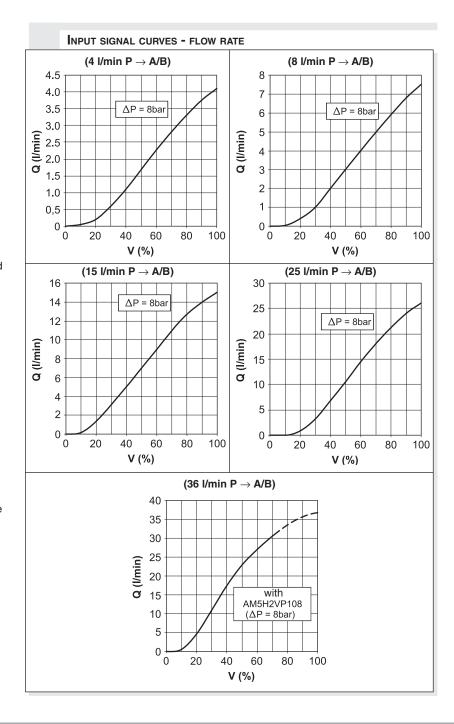
W

Command Enable

W = without external command Enable

Type command

V = signal voltage ± 10V

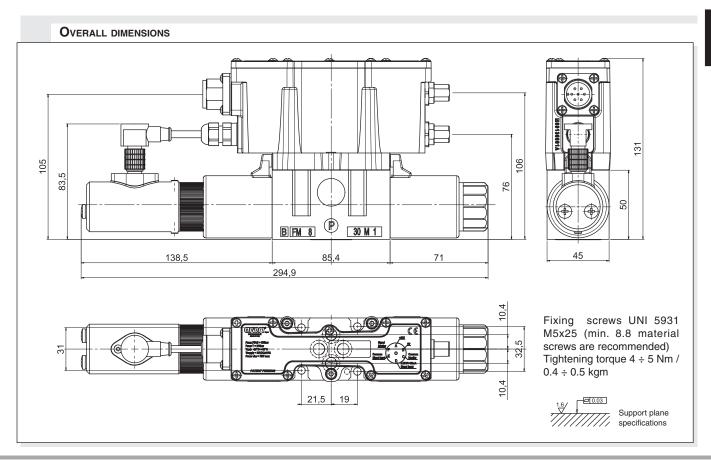

C = signal current 4... 20mA

S1

No variants

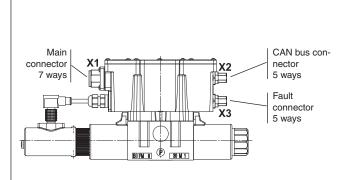
1

Serial No.




### **STEP RESPONSE** ( $\Delta p = 8 \text{ bar P/A}$ ) 0 ÷ 100% Stroke (%) 0 1 Time (ms) 100% ÷ 0 Stroke (%) + 0

Time (ms)


### **O**PERATING SPECIFICATIONS OF VALVE WITH TRANSDUCER

| Installation                                                                                | must keep horizontal                                                   |  |  |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--|--|
| Max. operating pressure ports P                                                             | /A/B 350 bar                                                           |  |  |
| Dynamic pressure port T                                                                     | 210 bar                                                                |  |  |
| Static pressure port T                                                                      | 210 bar                                                                |  |  |
| Nominal flow                                                                                | 4 / 8 / 15 / 25 / 36 l/min                                             |  |  |
| Performance curves                                                                          | See diagrams                                                           |  |  |
| Fluid temperature                                                                           | $-20 \div 75^{\circ}$ C (preferably $40 \div 50^{\circ}$ C)            |  |  |
| Fluid viscosity                                                                             | $10 \div 500 \text{ mm}^2/\text{s}$                                    |  |  |
| Max. contamination level                                                                    | class 7 to 9 in accordance to NAS 1638 with filter $\beta_{10} \ge 75$ |  |  |
| Weight                                                                                      | 2.76 kg                                                                |  |  |
| Nominal supply voltage                                                                      | 24Vdc                                                                  |  |  |
| Input signal range (see ordering                                                            | code) ± 10V or 4 20mA                                                  |  |  |
| Supply voltage lower limit                                                                  | 18V                                                                    |  |  |
| Supply voltage upper limit                                                                  | 30V                                                                    |  |  |
| Peak power                                                                                  | 50W                                                                    |  |  |
| Max. coil temperature                                                                       | 150 °C                                                                 |  |  |
| Duty cycle                                                                                  | Continuous 100% ED                                                     |  |  |
| Hysteresis                                                                                  | < 0.1%                                                                 |  |  |
| Response sensitivity                                                                        | < 0.1%                                                                 |  |  |
| Repeatibility                                                                               | <0,1%                                                                  |  |  |
| Frequency response -3dB (Input                                                              | ,                                                                      |  |  |
| Fault signal output                                                                         | 0V = failure or not working valve 24V = valve OK                       |  |  |
| Spool position monitor                                                                      | ± 10V                                                                  |  |  |
| Ambient temperature range                                                                   | -20 ÷ 60°C                                                             |  |  |
| Type of protection                                                                          | IP 65                                                                  |  |  |
| Operating specifications are valid for fluids with 46 mm <sup>2</sup> /s viscosity at 40°C. |                                                                        |  |  |

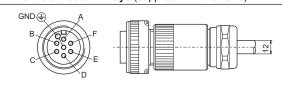




### **ELECTRICAL CONNECTIONS**



- A positive command value 0 to +10V (or 12 to 20mA) at D and the reference potential at E, results in a flow from P to A and B to T.
- A negative command value 0 to -10V (or 12 to 4mA) at D and the reference potential at E, results in a flow from P to B and A to T.


### X2\*: 5 ways M12 connector, CAN communication (to be ordered separately)

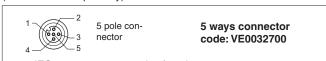


| Туре           | PIN | Description |  |  |
|----------------|-----|-------------|--|--|
|                | 1   | CAN_H       |  |  |
| CAN data       | 2   | CAN_L       |  |  |
| Aron interface | 3   |             |  |  |
|                | 4   |             |  |  |
|                | 5   | GND         |  |  |

<sup>\*</sup> Connection cable recommended: up to 50m cable length type LiYCY 7x0.75 mm<sup>2</sup>. For outside diameter see plug-in connector sketch. Only connect screen to PE on the supply side.

### X1: Main connector 7 ways (supplied with the valve)

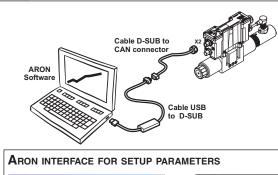


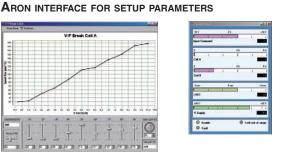

DIN EN 175201-804 - 7 poles female

| _                                    |     |                               |
|--------------------------------------|-----|-------------------------------|
| Туре                                 | PIN | Description                   |
| Main power supply                    | Α   | +24Vdc                        |
|                                      | В   | OV / common supply            |
| OV / common of signal monitor        | C   | OV / common of signal monitor |
| Input of differential signal command | D   | ± 10V or 420mA                |
|                                      | E   | 0V / common                   |
| Output of signal monitor             | F   | $\pm$ 10V (10V = full stroke) |
|                                      | GND | GND                           |

Connection cable recommended: up to 50m cable length type LiYCY 7x1.0 mm². For outside diameter see plug-in connector sketch. Only connect screen to PE on the supply side.

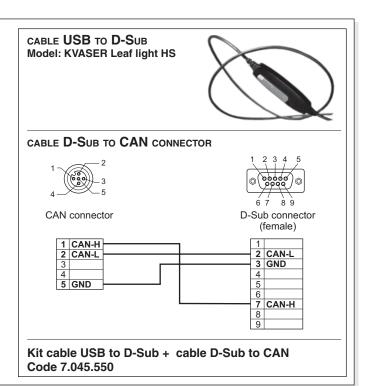
### X3\*: 5 ways M12 connector - Fault digital command


(to be ordered separately)




IEC 61076-2-101 - 5 poles female

| Туре                     | PIN   | Description                                                         |  |  |
|--------------------------|-------|---------------------------------------------------------------------|--|--|
| Digital output signal of | 1     | Connects to +24Vdc                                                  |  |  |
| valve FAULT              | 2     | Signal out:<br>0V = failure of electronic control<br>24V = valve 0K |  |  |
|                          | 3-4-5 | Not used                                                            |  |  |


### ARON SOFTWARE AND CABLES





### Aron Firetune software code: P35150005

For further informations about Aron Firetune read the manual. The software is included with valve supply.

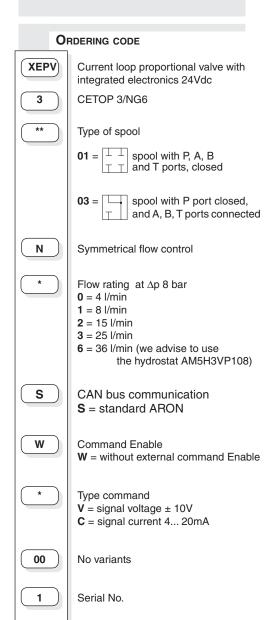


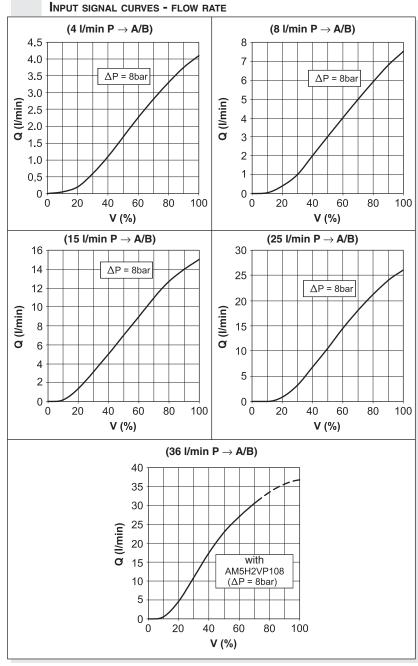


|         | XEPV.3           |
|---------|------------------|
| AM.3.H  | CH. VIII PAGE 18 |
| AM.5.H  | CH. VIII PAGE 19 |
| BC.3.07 | Ch. VII PAGE 12  |
|         |                  |
|         |                  |
|         |                  |
|         |                  |

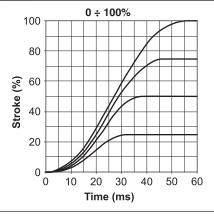
# XEPV.3... PROPORTIONAL VALVE WITH ELECTRONIC ON BOARD

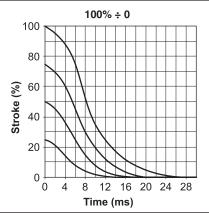
এদ brevini


The proportional directional valves XEPV are designed as direct operated components for subplate mounting. They are actuated by means of proportional solenoids with central thread and removable coil. The solenoids are controlled by integrated control electronics.


### Features

- Integrated control electronics
- Setup parameters by CAN interface
- Current compensation, gain current and ramps setting
- Monitoring of the valve by real time scope interface


European norms: EN 61000 - ElectroMagnetic Compatibility (EMC) - industrial environment





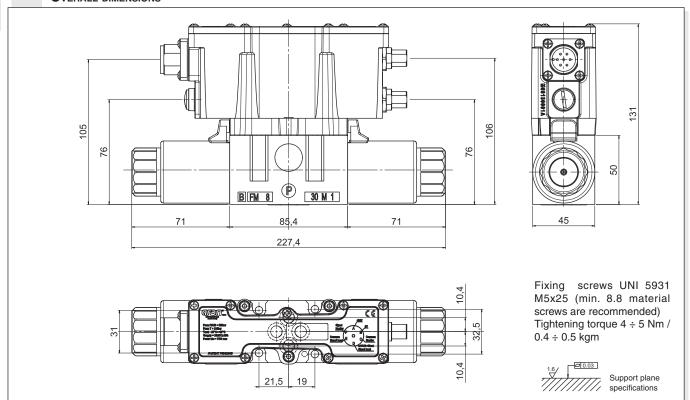



### **S**TEP RESPONSE ( $\Delta p = 8 \text{ bar P/A}$ )

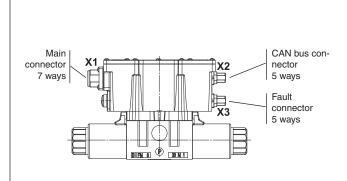




### **OPERATING SPECIFICATIONS OF VALVE WITH TRANSDUCER**


Installation must keep horizontal Max. operating pressure ports P/A/B 350 bar Dynamic pressure port T 210 bar Static pressure port T 210 bar Nominal flow 4 / 8 / 15 / 25 / 36 l/min Performance curves See diagrams  $-20 \div 75^{\circ}$ C (preferably  $40 \div 50^{\circ}$ C) Fluid temperature Fluid viscosity  $10 \div 500 \text{ mm}^2/\text{s}$ class 7 to 9 in accordance to NAS 1638 with filter  $B_{10} \ge 75$ Max. contamination level Weight 2.45 kg

Nominal supply voltage 24Vdc Input signal range (see ordering code) ± 10V or 4... 20mA Supply voltage lower limit 18V Supply voltage upper limit 30V Peak power 50W Max. coil temperature 150 °C Continuous 100% ED Duty cycle Hysteresis < 5% Response sensitivity < 0.5% Repeatibility Fault signal output 0V = failure or not working valve 24V = valve OK Current monitor  $\pm 10V$ Ambient temperature range -20 ÷ 60°C Type of protection IP 65


Operating specifications are valid for fluids with 46 mm<sup>2</sup>/s viscosity at 40°C.

# 8

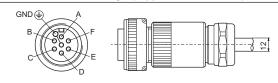
### OVERALL DIMENSIONS



### **ELECTRICAL CONNECTIONS**



- A positive command value 0 to +10V (or 12 to 20mA) at D and the reference potential at E, results in a flow from P to A and B to T.
- A negative command value 0 to -10V (or 12 to 4mA) at D and the reference potential at E, results in a flow from P to B and A to T.


### X2\*: 5 ways M12 connector, CAN communication (to be ordered separately)



| Туре           | PIN | Description |
|----------------|-----|-------------|
|                | 1   | CAN_H       |
| CAN data       | 2   | CAN_L       |
| Aron interface | 3   |             |
|                | 4   |             |
|                | 5   | GND         |

<sup>\*</sup> Connection cable recommended: up to 50m cable length type LiYCY 7x0.75 mm<sup>2</sup>. For outside diameter see plug-in connector sketch. Only connect screen to PE on the supply side.

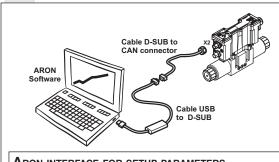
### X1: Main connector 7 ways (supplied with the valve)



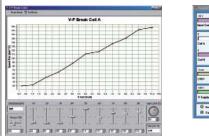
DIN EN 175201-804 - 7 poles female

| Туре                                 | PIN | Description                   |  |
|--------------------------------------|-----|-------------------------------|--|
| Main power supply                    | Α   | +24Vdc                        |  |
|                                      | В   | 0V / common supply            |  |
| OV / common of signal monitor        | C   | OV / common of signal monitor |  |
| Input of differential signal command | D   | ± 10V or 420mA                |  |
|                                      | Е   | 0V / common                   |  |
| Output of signal monitor             | F   | ± 10V (10V = max current)     |  |
|                                      | GND | GND                           |  |

Connection cable recommended: up to 50m cable length type LiYCY 7x1.0 mm². For outside diameter see plug-in connector sketch. Only connect screen to PE on the supply side.


### X3\*: 5 ways M12 connector - Fault digital command

(to be ordered separately)




| Туре                                 | PIN   | Description                                                         |  |
|--------------------------------------|-------|---------------------------------------------------------------------|--|
| Digital output signal of valve FAULT | 1     | Connects to +24Vdc                                                  |  |
|                                      | 2     | Signal out:<br>0V = failure of electronic control<br>24V = valve 0K |  |
|                                      | 3-4-5 | Not used                                                            |  |

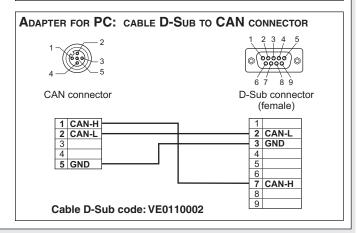
### ARON SOFTWARE AND CABLES



### ARON INTERFACE FOR SETUP PARAMETERS






### Aron Firetune software code: P35150005

For further information about Aron Firetune read the manual. The software is included with valve supply.

### ADAPTER FOR PC: CABLE USB TO D-SUB



Model: KVASER Leaf light HS (not supplied, commercial parts)





# AM.3.H... 2 AND 3 WAY HYDROSTATS CETOP 3



AM.3.H...

The 2 or 3 way pressure regulator type AM.3.H ensure the constant set flow rate in the presence of varying system load (pressure) by keeping constant the pressure drop ( $\Delta p = 4/8$  bar) in relation to the flow rate regulation.

In order to achieve the direction and flow rate dual control function, it is normally used together with a proportional solenoid valve

25 l/min Max. flow Max. operating pressure 350 bar ∆p adjustment 4 bar 8 bar Fluid viscosity 10 ÷ 500 mm<sup>2</sup>/s Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C Max. contamination level class 8 in accordance with NAS 1638 with filter B<sub>10</sub>≥75 Weight 1,4 Kg

### **O**RDERING CODE

AM

Modular valve

3

CETOP 3/NG6

Н

Hydrostat

\*\*

**2V** = 2 way

3V = 2 way

P1

Function at port P

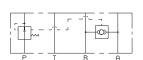
\*\*

Differential pressure (Δp)

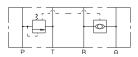
**04** =  $\Delta p$  4 bar

**08** =  $\Delta$ p 8 bar

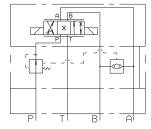
\*\*


2

00 = No variant


V1 = Viton

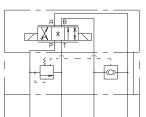
Ш


Serial No.



AM.3.H.2V.P1...

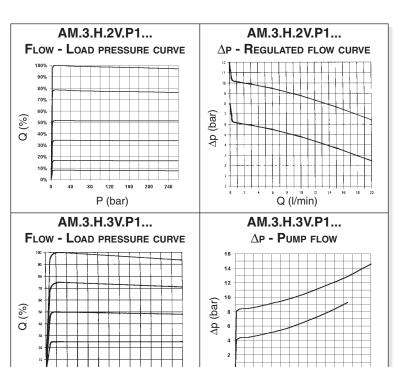



AM.3.H.3V.P1...



Proportional valve XD.3.C...

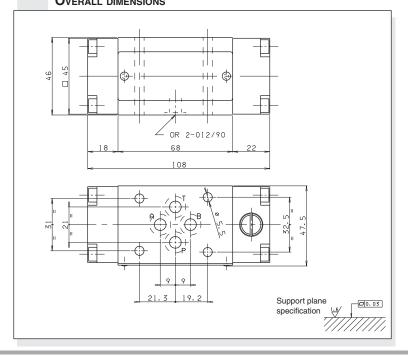
Hydrostat AM.3.H.2V...


BASE



Proportional valve XD.3.C...

Hydrostat **AM.3.H.3V...** 


BASE



Qp (l/min)

### OVERALL DIMENSIONS

P (bar)





### AM.5.H...

# AM.5.H... 2 AND 3 WAY HYDROSTATS CETOP 5

The 2 or 3 way pressure regulator type AM.5.H ensures a constant set flow rate in the presence of varying system load (pressure) by keeping constant the pressure drop ( $\Delta p\!=\!8$  bar) in relation to the flow rate regulation. In order to achieve the direction and flow rate dual control function, it is normally used together with a proportional solenoid valve.

Max. flow AM.5.H.2V... 65 l/min Max. flow AM.5.H.3V... 70 l/min Max. operating pressure 350 bar ∆p adjustment 8 bar Fluid viscosity 10 ÷ 500 mm<sup>2</sup>/s -25°C ÷ 75°C Fluid temperature Ambient temperature -25°C ÷ 60°C Max. contamination level class 8 in accordance with NAS 1638 with filter  $\beta_{10} \ge 75$  2,7 Kg Weight

খ্যদ brevini

### **ORDERING CODE**

AM

Modular valve

5

CETOP 5/NG10

Н

Hydrostat

\*\*

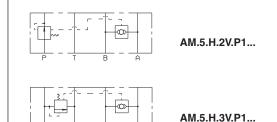
**2V** = 2 way **3V** = 3 way

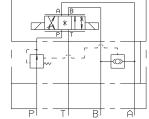
Function at port P

P1 08

Differential pressure (∆p)

 $\Delta p$  8 bar


\*\*


**00** = No variant

V1 = Viton

2

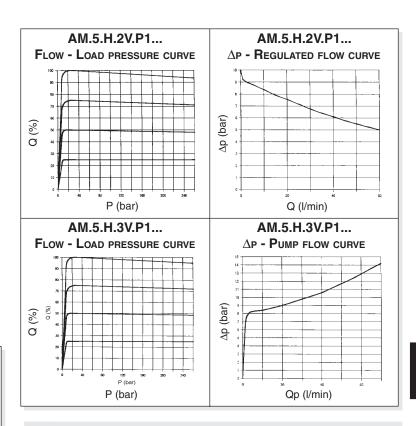
Serial No.



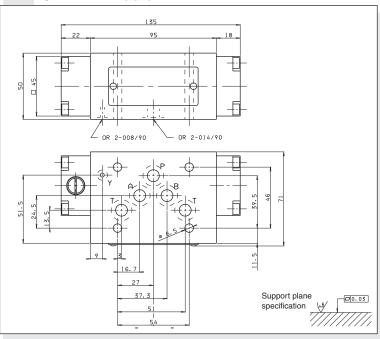


Proportional valve XD.5.C...

Hydrostat AM.5.H.2V...


BASE

A B P T


Proportional valve XD.5.C...

Hydrostat AM.5.H.3V...

BASE



### OVERALL DIMENSIONS





| XQ.3                      |                  |  |  |  |  |
|---------------------------|------------------|--|--|--|--|
| STANDARD CONNECTORS       | Ch. I PAGE 20    |  |  |  |  |
| "D15P" PROPORT. SOLENOIDS | CH. VIII PAGE 21 |  |  |  |  |
| REM.S.RA                  | Ch. IX PAGE 4    |  |  |  |  |
| SE.3.AN21.00              | CH. IX PAGE 11   |  |  |  |  |
| BC.3.08 / BC.3.09         |                  |  |  |  |  |
| BC.06.XQ3                 | Ch. VII PAGE 13  |  |  |  |  |

### **ORDERING CODE**

XQ

Proportional flow control valve

3

No. of way

C

Pressure compensation

3

CETOP 3/NG6

Flow rates

F = 5 l/minG = 10 l/min

**H** = 16 l/min

I = 28 I/min

**M** = With manual pressure limiter

S = Without manual pressure limiter

Setting ranges

 $1 = 8 \div 50 \text{ bar}$ 

 $2 = 25 \div 170 \text{ bar}$ 

 $3 = 50 \div 315 \text{ bar}$ 

Omit for XQ.3.C.\*.S version

**E** = With rotary emergency (type **P2**)

S = Without rotary emergency

Voltage

E = 9VDC (2,35 A)

F = 12VDC (1.76 A)

G = 24VDC (0.88 A)

Variant (\*):

**S1** = No variant (without connectors)

SV = Viton

L5 = emergency lever

**R5** = Rotary emergency180°

2

Serial No.

(\*) All variants are considered without connectors. The connectors must be order separately. See Ch. I Page 20

### XQ.3... Proportional flow control VALVES PRESSURE COMPENSATED CETOP 3

খ্যদ brevini

This is a proportional valve where both the flow rate and pressure control flow functions have been integrated according to the 3 way regulation concept.

The interface UNI ISO 4401 - 03 - 02 - 0 - 94 standard (ex CETOP R 35 H 4.2-4-03) allows for direct mounting on modular block or multiple sub-bases, which makes possible many advantageous and extremely compact application solution as a consequence of their simplicity of installation.

The 3 way type pressure compensator, inserted into the valve, holds the pressure drop across the flow rate proportional regulator constant (approx. 8 bar) independently from the controlled load variations, whereby ensuring proportional between the set flow rate and the electrical command signal.

Additionally, the system maximum safety pressure can be regulated through a manual command. This valve, if mounted on the feed line to the manifold block, can be used to control several circuits which are not operating at the same time.

### **D**IAGRAMS INPUT SIGNAL $\Delta P$ - Pump flow rate FLOW RATE (bar) Q (I/min) 4 Qp (l/min) LOAD PRESSURE CUTOFF PRESSURE (M) FLOW RATE Qa = 25 (I/min)\*Q (I/min) Q (//min)

The fluid used is a mineral based oil with a viscosity of 46 mm<sup>2</sup>/s at 40°C. The tests have been carried out at with a fluid of a 40°C.

P (bar)

P (bar) (\*) Tested with 25 l/min supply

### TABLE 1 - FLOW / PRESSURE SPECIFICATIONS

| Model Hydraulic<br>symbol | Max flow<br>rate<br>(I/min) | Max flow<br>in P<br>(I/min) | Max limiter pressure (bar) | Max load<br>pressure<br>(bar) | ∆p<br>Control<br>(bar) |
|---------------------------|-----------------------------|-----------------------------|----------------------------|-------------------------------|------------------------|
| XQ.3.C.3.*.M              | 5<br>10<br>16<br>28         | 40                          | 8÷50<br>25÷170<br>50÷315   | 250                           | 8                      |
| XQ.3.C.3.*.S              | 5<br>10<br>16<br>28         | 40                          |                            | 250                           | 8                      |

2.25 Ohm

Max. operat. pressure ports A/B / With P port blocked on subplate 315 bar Max. operating pressure ports T - for dynamic pressure see note (\*) 250 bar Regulated flow rate See diagram page before Continuous 100% ED Relative duty cycle Type of protection IEC 144 class IP 65 Flow rate gain See diagrams Hysteresis with connection P/A/B/T  $\Delta p = 5$  bar (P/A) ≤4% of max. flow rate 10 ÷ 500 mm<sup>2</sup>/s Fluid viscosity -20°C ÷ 75°C Fluid temperature Max. contamination level class 8 in accordance with NAS 1638 with filter B<sub>10</sub>≥75 Weight version XQ.3.C.\*.M... 2,39 Kg Weight version XQ.3.C.\*.S... Type of voltage 12V 24V 9V Max. current 2.35A 1.76 A 0.88 A

(\*) Pressure dynamic allowed for 2 millions of cycles.

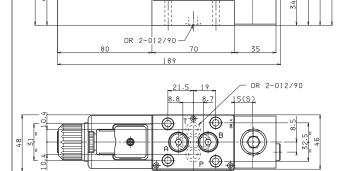
Solenoid coil resistance at 25°C (77°F)

### **ELECTRONIC CONTROL UNIT**

### REM.S.RA.\*.\*.

Card type control for single solenoid. Recommended dither frequency 100 Hz.

### SE.3.AN.21.00...

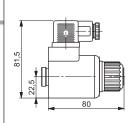

EUROCARD type control for single solenoid

 Operating specifications are valid for fluid with 46 mm<sup>2</sup>/s viscosity at 40°C, using the specified ARON electronic control units

# TYPICAL INSTALLATION BC.3.09.00.1 **OVERALL DIMENSIONS**

4.0 Ohm

16.0 Ohm




Fixing screws UNI 5931 M5x80 (min. 8.8 material screws are recommended) Tightening torque 4 ÷ 5 Nm / 0.4 ÷ 0.5 Kgm Support plane

□0.03

Two positions hand emergency. The regulated flow with emergency actuated can be less than nominal value.

R5 Rotary emergency 180°(1)



### "D15P" Proportional solenoids খ্যদ brevini

Rotary emergency

version XQ.3.C.3.\*.\*.E

**IP 66** Type of protection (in relation to connector used) 100% ED Duty cycle Insulation class wire 0,354 Kg Weight (coil) Weight (solenoid) 0,608 Kg ETD15P - 01/2002/e

70,5

124 5 L5 Emergency lever



| XQP.3                     |                  |  |  |  |
|---------------------------|------------------|--|--|--|
| STANDARD CONNECTORS       | Ch. I PAGE 20    |  |  |  |
| "D15P" PROPORT. SOLENOIDS | CH. VIII PAGE 23 |  |  |  |
| REM.S.RA                  | CH. IX PAGE 4    |  |  |  |
| SE.3.AN.21.00             | CH. IX PAGE 11   |  |  |  |
| BC.06.XQP3                | CH. VII PAGE 13  |  |  |  |
|                           |                  |  |  |  |

### ORDERING CODE

(XQP)

Open loop 2/3 way proportional compensated flow regulator

3

CETOP 3/NG6

 $\begin{bmatrix} \mathbf{c} \end{bmatrix}$ 

2/3 way compensation with priority function

3

3 way version (standard)
For to obtain 2-way version the P line
must be closed on the subplate

\*

Nominal flow rates

**F** = 6 l/min

**G** = 12 l/min

**H** = 22 l/min

I = 32 l/min L = 40 l/min

\*

**S** = without decompression

**D** = with decompression

\*

Max. current to solenoid

E = 2.35 A

**F** = 1.76 A

G = 0.88 A

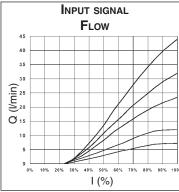
\*\*

Variant (\*):

**S1** = No variant

**P2** = Rotary emergency

**R5** = Rotary emergency 180°


SV = Viton

Serial No.

2

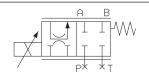
(\*) All variants are considered without connectors. The connectors must be order separately.

See Ch. I Page 20



# 2 WAY COMPENSATION (A 270 bar - B VARIABLE) 50 45 40 35 30 20 0 15 10 5 0 0 50 100 150 200 P (bar)

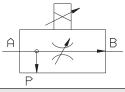
# ## brevini

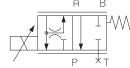

The open loop proportional flow regulator is 2 and 3 way compensated with priority function. It is designed to regulate flow in proportion to an applied electrical current (REM or SE3AN power amplifier). Flow regulation is load independent - B port. Load compensation is achieved by a spool compensator which holds the pressure drop constant across the proportional spool.

XQP.3... OPEN LOOP 2/3 WAY PROPORTIONAL

PRESSURE COMPENSATED FLOW REGULATORS

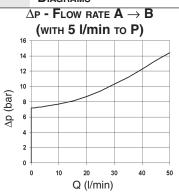
Valves are available in the following versions (see hydraulic symbol):

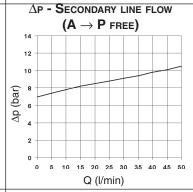

2 way pressure compensated
3 way pressure compensated with priority function.
3 way pressure compensated with priority and venting function.



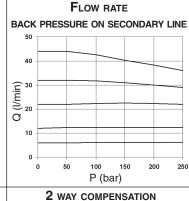

• In order to obtain the 2 way pressure compensated version the cavities P and T have be closed on the subplate.

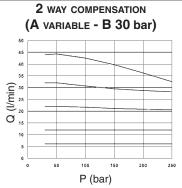
### HYDRAULIC SYMBOLS


# SIMPLIFIED TYPE







 In order to obtain the 3 way pressure compensated version the cavity T have be closed on the subplate.


### **DIAGRAMS**





# FLOW RATE BACK PRESSURE ON PRIORITY LINE 50 45 40 35 20 20 0 50 100 150 200 250 P (bar)





The fluid used is a mineral based oil with a viscosity of 46 mm<sup>2</sup>/s at 40°C. The tests have been carried out at with a fluid of a 40°C.

### **OPERATING SPECIFICATIONS**

Max. operat. pressure ports A/B /P see note (\*) With T port blocked on subplate 250 bar Regulated flow rate 6 / 12 / 22 / 32 / 40 l/min Decompression drain flow max 0,7 l/min Relative duty cycle Continuous 100% ED

Type of protection (in relation to the connector used)

Fluid viscosity
Fluid temperature
Ambient temperature

Flow rate gain

Weight

Max. contamination level

Continuous 100% ED IP 65
See diagram "Input signal flow"
10 ÷ 500 mm²/s
-20°C ÷ 75°C
-20°C ÷ 70°C

from class 7 to 9 in accordance with NAS 1638 with filter  $\beta_{10} \ge 75$ 

|                                           |              |         | .,9      |
|-------------------------------------------|--------------|---------|----------|
| Max. current                              | 2.33A        | 1.76 A  | 0.88 A   |
| Solenoid coil resistance at 25°C (77°F)   | 2.25 Ohm     | 4.0 Ohm | 16.0 Ohm |
| Hysteresis with ∆p 7 bar                  | ≤5%          | <5%     | <8%      |
| Response to step $\Delta p = 7$ bar       |              |         |          |
| 0 ÷ 100%                                  | 32 ms        | 40 ms   | 85 ms    |
| 100% ÷ 0                                  | 33 ms        | 33 ms   | 33 ms    |
| Frequency response -3db (Input signal 50% | ± 25% Vmax.) |         |          |
|                                           | 22Hz         | 22Hz    | 12Hz     |

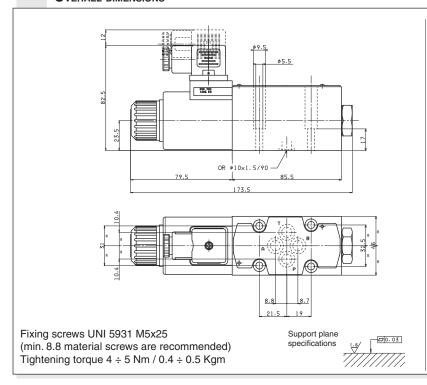
(\*) Pressure dynamic allowed for 2 millions of cycles

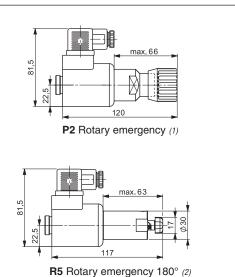
Operating specifications are valid for fluids with 46 mm $^2$ /s viscosity at 40 $^\circ$ C, using specified ARON electronic control units.

Performance data are carried out using the specified Aron power amplifier SE.3.AN... powered to 24V.

### **AMPLIFIER UNIT AND CONTROL**

### REM.S.RA.\*.\*...

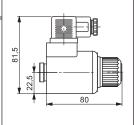

Electronic card for control single proportional solenoid valve.


Recommended dither frequency 100 Hz.

### SE.3.AN.21.00...

Electronic card format EUROCARD for control single proportional solenoid valve

### **OVERALL DIMENSIONS**






- (1) P2 Adjustable hand emergency.
- (2) **R5** Two positions hand emergency. The regulated flow with emergency actuated can be less than nominal value.

এদ brevini



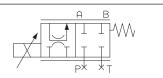


### "D15P" Proportional solenoids

| Type of protection (in relation to connector used) | IP 66              |
|----------------------------------------------------|--------------------|
| Duty cycle                                         | 100% ED            |
| Insulation class wire                              | н                  |
| Weight (coil)                                      | 0,354 Kg           |
| Weight (solenoid)                                  | 0,608 Kg           |
|                                                    | ETD15P - 01/2002/e |

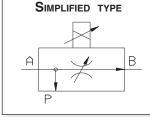


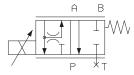
| XQP.5        |                  |
|--------------|------------------|
| ECTORS       | Ch. I PAGE 20    |
| T. SOLENOIDS | Ch. VIII PAGE 25 |


Ch. IX PAGE 4

### XQP.5. OPEN LOOP 2/3 WAY PROPORTIONAL PRESSURE COMPENSATED FLOW REGULATORS CETOP 5 ## brevini

The open loop proportional flow regulator is 2 and 3 way compensated with priority function. It is designed to regulate flow in proportion to an applied electrical current (REM power amplifier). Flow regulation is load independent - B port. Load compensation is achieved by a spool compensator which holds the pressure drop constant across the proportional spool.


Valves are available in the following versions (see hydraulic symbol):


- 2 way pressure compensated
- 3 way pressure compensated with priority function.
- 3 way pressure compensated with priority and venting function.



**S**YMBOLS HYDRAULIC

· In order to obtain the 2 way pressure compensated version the cavities P and T have be closed on the subplate.





· In order to obtain the 3 way pressure compensated version the cavities T have be closed on the subplate.

### **ORDERING CODE**

XQP

STANDARD CONNE "D19P" PROPOR REM.S.RA...

> Open loop 2/3 way proportional compensated flow regulator

5

CETOP 5/NG10

C

2/3 way compensation with priority function

3

3 way version (standard) For to obtain 2-way version the P line must be closed on the subplate

\*

Nominal flow rates

**E** = 45 l/min

 $\mathbf{F} = 75 \text{ l/min}$ 

**G** = 105 l/min

**S** = without decompression **D** = with decompression

Voltage

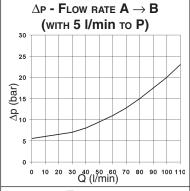
**F** = 12V DC

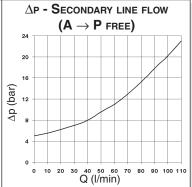
**G** = 24V DC

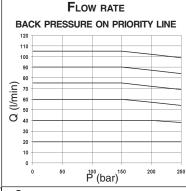
\*\*

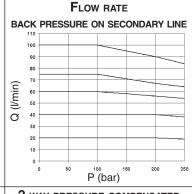
Variant (\*):

**S1** = No variant (without connectors)

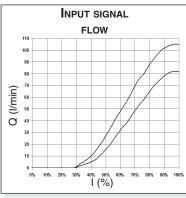

SV = Viton

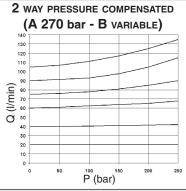

P2 = Rotary emergency

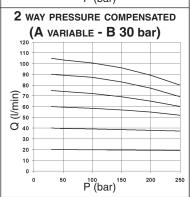

1


Serial No.

### **D**IAGRAMS






(\*) All variants are considered without connectors. The connectors must be order separately. See Ch. I Page 20







The fluid used is a mineral based oil with a viscosity of 46 mm<sup>2</sup>/s at 40°C. The tests have been carried out at with a fluid of a 40°C.

## 8

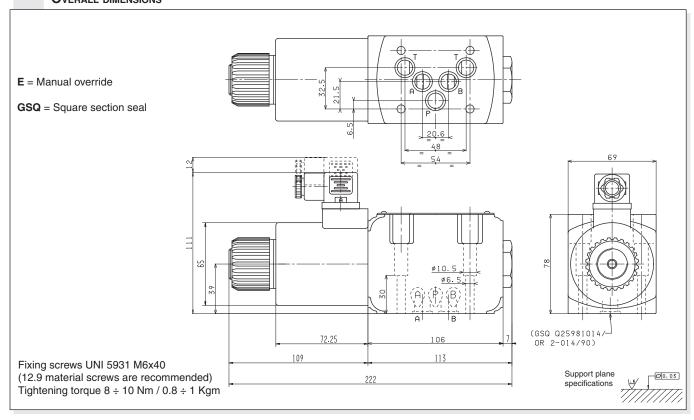
### **OPERATING SPECIFICATIONS**

| Max. operating pressure ports A/B /P (*)               |                   | 250 bar                            |
|--------------------------------------------------------|-------------------|------------------------------------|
| Regulated flow rate                                    |                   | 75 / 105 l/min                     |
| Decompression drain flow                               |                   | max 0,7 l/min                      |
| Relative duty cycle                                    | Continu           | ious 100% ED                       |
| Type of protection (in relation to the connector used) |                   | IP 65                              |
| Flow rate gain                                         | See diagram "Inp  | out signal flow"                   |
| Fluid viscosity                                        | 10                | $0 \div 500 \text{ mm}^2/\text{s}$ |
| Fluid temperature                                      |                   | -20°C ÷ 75°C                       |
| Ambient temperature                                    |                   | -20°C ÷ 60°C                       |
| Max. contamination level                               | from class 7 to 9 |                                    |
|                                                        | with NAS 1638 wi  | 10                                 |
| Weight                                                 |                   | 4,97 Kg                            |
| Type of voltage                                        | 12V               | 24V                                |
| Max. current                                           | 2.5 A             | 1.25 A                             |
| Solenoid coil resistance at 20°C (68°F)                | 2.85 Ohm          | 11.4 Ohm                           |
|                                                        |                   |                                    |
| Hysteresis with ∆p 7 bar                               | <5%               | <8%                                |
| Response to step $\Delta p = 7$ bar (P/A)              |                   |                                    |
| 0 ÷ 100%                                               | ~ 65 ms           | -                                  |
| 100% ÷ 0                                               | ~ 30 ms           | -                                  |
| Frequency response -3db (Input signal 50% ± 25% V      | max.)             |                                    |
|                                                        | 7Hz               | -                                  |
|                                                        |                   |                                    |

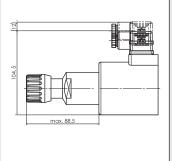
### **A**MPLIFIER UNIT AND CONTROL

### REM.S.RA.\*.\*...

 $\label{thm:control} Electronic \ regulator for control \ single \ proportional \\ solenoid \ valve.$ 


Recommended dither frequency 100 Hz.

(\*) Pressure dynamic allowed for 2 millions of cycles. T ports closed on the subplate.


Operating specifications are valid for fluids with 46 mm<sup>2</sup>/s viscosity at 40°C, using specified ARON electronic control units.

Performance data are carried out using the specified Aron power amplifier type REM.S.RA... power supplied at 24V.

### OVERALL DIMENSIONS







## "D19P"

### Proportional solenoids

| Type of protection (in relation to connector used) | IP 65            |
|----------------------------------------------------|------------------|
| Ambient temperature                                | -54°C ÷ 60°C     |
| Duty cycle                                         | 100% ED          |
| Insulation class wire                              | Н                |
| Weight                                             | 1,58 Kg          |
| ETI                                                | 019P - 01/2002/e |

খ্যদ brevini

File: XQP5001\_E VIII • 25 06/2011/e



| XP.3                    |               |
|-------------------------|---------------|
| STANDARD CONNECTORS     | Ch. I PAGE 20 |
| REM.S.RA                | Ch. IX page 4 |
| V.M.P / V.M.L / V.M.P.E | CH. II PAGE 6 |

### **ORDERING CODE**

ΧP Max. pressure valve

CETOP 3/NG6

1 = max. 50 bar2 = max. 140 bar 3 = max. 320 bar ←

About pressure range 3 it's suggested to add a modular filter with 5µm cartridge

E = with manual limiter S = without manual limiter

Voltage:

3

\*\*

1

**F** =12V DC

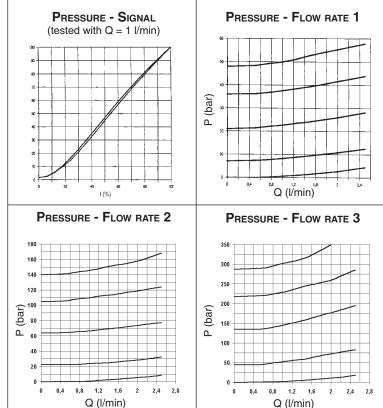
**G** =24V DC

Variant (\*): S1 =No variant

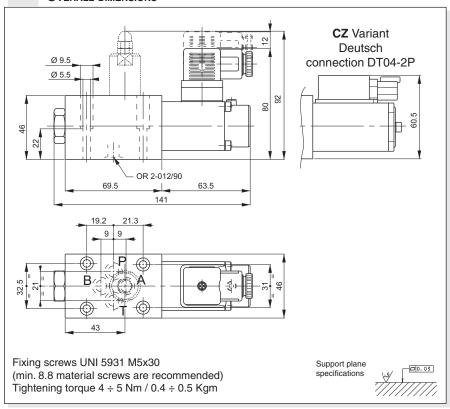
SV =Viton

CZ =Deutsch connection

Serial No.


(\*) All variants are considered without connectors. The connectors must be order separately. See Ch. I Page 20

### XP.3... Proportional pressure CONTROL VALVES CETOP 3/NG6


খ্যদ brevini

Proportional maximum pressure valves type XP.3.\*.. are used to regulate a hydraulic circuit pressure by means of a variable electric signal. Their precise implementation allows for high and constant operational standard up to a maximum 2,5 l/min flow rate. A manually pressure limit setting version is also available, to protect the system from uncontrolled electrical signals.

• Other valves (e.g. subplate or in-line mounted valves) should be ordered separately.



### **OVERALL DIMENSIONS**

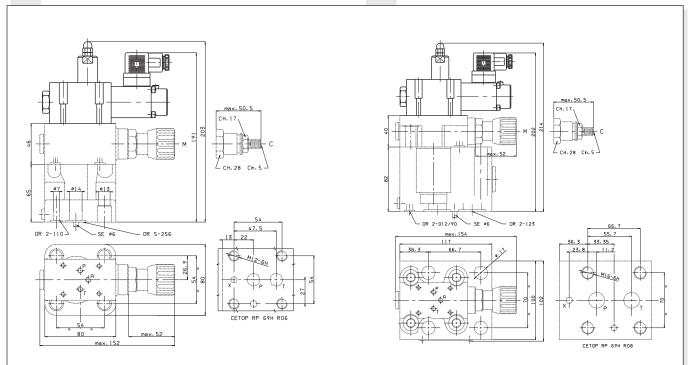


Max. operating pressure (depending on the flow rate) 350 bar 2,5 l/min Max. flow Max. ambient temperature 50° C Linearity See diagrams Max. hysteresis <3% of nominal value Repeatibility error (between 150 and 680 mA) <2% Resistance at 20°C (24V) 24.6 Ohm Resistance at 20°C (12V) 7.2 Ohm Max. resistance (ambient 20°C) (24V) at op. temp. 31 Ohm Max. resistance (ambient 20°C) (12V) at op. temp. 9 Ohm Max. current at (24V) 0.68A Max. current at (12V) 1.25A Type of protection IEC 144 class IP 65 class 8 in accordance with NAS 1638 with filter  $\beta_{10} \ge 75$ Max. contamination level Fluid temperature -20°C÷75°C 10÷500 mm<sup>2</sup>/s Fluid viscosity

### **E**LECTRONIC CONTROL UNITS

### REM.S.RA.\*.\*.

Card type control for single solenoid 12V and 24V.

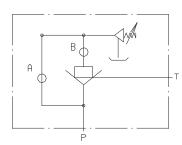

Recommended dither frequency 330 Hz.

### Typical installation XP.3... + VMP.E.16...

Weight

### Typical installation XP.3... + VMP.E.25...

1,4 Kg




• WITH MOUNTING ON VMPE USE THE FOLLOWING CALIBRATED ORIFICES (SEE V.M.P.\*.E VALVE AQ VARIANT)

VMP.E.16...  $A = \emptyset 1 mm$  $B = \emptyset$  0,3 mm

VMP.E.25...  $A = \emptyset 1,2 mm$ 

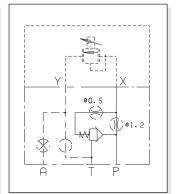
B = Ø 0,5 mm



<sup>•</sup> Operating specifications are valid for fluids with 33 mm<sup>2</sup>/s at 50°C, using specified ARON electronic control units.



### AM.3.XMP...


XP.3... Ch. VIII PAGE 26

# AM.3.XMP... AMPLIFIER VALVES FOR PROPORTIONAL CONTROL VALVES

খদ brevini

Max. operating pressure 320 bar Max. flow 30 l/min Min. flow 2 l/min 50° C Max. ambient temperature Linearity See diagrams Max. hysteresis <3% of nominal value Repeatibility error (150 ÷ 680 mA) XP3... <3% Max contamination level class 8 in accordance with NAS 1638 with filter B<sub>10</sub>375 Fluid temperature -20°C÷75°C Fluid viscosity 10÷500 mm<sup>2</sup>/s Weight 0,8 Kg

Operating specifications are valid for fluids with 33 mm<sup>2</sup>/s viscosity at 40°C, using Aron control units



Modular valve type AM.3.XMP... used together with the pressure proportional pilot type XP.3.. becomes a pressure control valve piloted by proportional command for rates up to 30 lt/min. The possibility of external drainage on A ensures its correct operation even with back pressure on the discharge side. Other valves types should be ordered separately.

### ORDERING CODE

AM

Modular valve

3

CETOP 3/NG6

XMP

maximum proportional pressure

2

Spring 2 bar (standard)

0

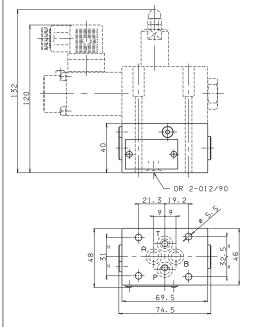
Standard dowels  $(\emptyset 1,2 \text{ dia supply } \emptyset 0,5 \text{ dia damper})$ 

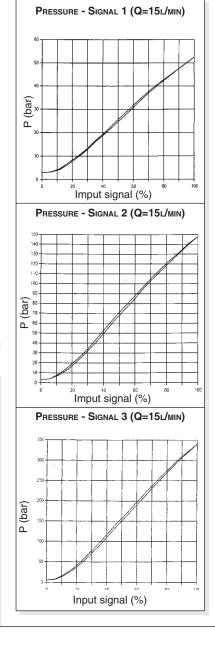
\*

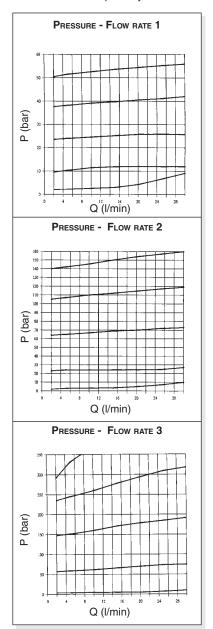
I = Internal drainage at TE = External draining at A

\*\*

1


00 =No variant


V1 =Viton


Serial No.

V 1 = V

### OVERALL DIMENSIONS







Support plane specifications 1.5/ 🖅 💆

Fixing screws UNI 593 M5x70 (min. 8.8 material screws are recommended) Tightening torque 4 ÷ 5 Nm / 0.4 ÷ 0.5 Kgm

### **A**BBREVIATIONS ΑP HIGH PRESSURE CONNECTION AS Phase Lag (DEGREES) BP LOW PRESSURE CONNECTION С STROKE (MM) CH ACROSS FLATS Сн INTERNAL ACROSS FLATS DA AMPLITUDE DECAY (DB) DΡ DIFFERENTIAL PRESSURE (BAR) F FORCE (N) **l**% INPUT CURRENT (A) M MANOMETER CONNECTION NG KNOB TURNS OR SEAL RING LOAD PRESSURE (BAR) **PARBAK** PARBAK RING PL Parallel connection $\mathbf{P}_{\mathsf{R}}$ REDUCED PRESSURE (BAR) Q FLOW (L/MIN) $\mathbf{Q}_{\mathsf{P}}$ PUMP FLOW (L/MIN) SE ELASTIC PIN SF Ball SR SERIES CONNECTION X **PILOTING** Υ DRAINAGE

### **ELECTRONICS**



| CEP.S       |                 |
|-------------|-----------------|
|             | Ch. IX PAGE 2   |
| REM.S.RA    |                 |
|             | Ch. IX PAGE 4   |
| REM.D.RA    |                 |
|             | Ch. IX PAGE 7   |
| SE.3.AN21   |                 |
|             | CH. IX PAGE 11  |
| SE.3.AN21RS |                 |
|             | Ch. IX PAGE 13  |
| LAB3        |                 |
|             | Ch. IX PAGE 15  |
| MAV1152     |                 |
|             | Ch. IX PAGE 19  |
| MAV1152HY   |                 |
|             | Ch. IX PAGE 22  |
| MAV4211     |                 |
|             | Ch. IX PAGE 25  |
| JC.3.D      |                 |
|             | Ch. IX PAGE 28  |
| JC.5.D      |                 |
|             | Ch. IX PAGE 30  |
| JC.F.D      |                 |
|             | Ch. IX page. 32 |





| CEP.S                     |               |
|---------------------------|---------------|
| ELECTRICAL SPECIFICATIONS | Ch. IX PAGE 2 |
| OVERALL DIMENSIONS        | Ch. IX PAGE 2 |
| FUNCTIONAL BLOCK DIAGRAM  | CH. IX PAGE 3 |
| ELECTRICAL CONNECTIONS    | Ch. IX PAGE 3 |
| SETTINGS TOPOGRAPHY       | CH. IX PAGE 3 |
| REFERENCE SIGNAL          | Ch. IX PAGE 3 |

### CEP.S.. ELECTRONIC AMPLIFIER PLUG VERSION FOR SINGLE SOLENOID PROPORTIONAL VALVE.

এদ brevini

The electronic amplifier Plug version was designed in compliance whit EN 175301-803 (ex DIN43650), for direct mounting on the valve solenoid. The CEP.S can used whit proportional valves XD.\*.A..., XDP.\*.A..., XP.3..., XQP.\*..., CXQ.3...

The output stage operates on the pulse width modulation principle (P.W.M.) and is provided with current feedback in order to obtain a solenoid output current proportional to the reference input signal.

Gain, minimum current and rise and fall ramp time adjustments are possible through the corresponding potentiometers fitted on top side of the card, and can be accessed by slackening the relative screw and opening the cover of the connector. While the output current to the solenoid can be measured via the Valve Current test points.

SERIE 2, has the diode reverse polarity protection inside on the power line.

### **ELECTRICAL SPECIFICATIONS**

| Power supply Peak supply Minimum power supply Required power Type of protection | 12VDC o 24VDC<br>40VDC<br>10.5VDC<br>30W<br>IP65   |
|---------------------------------------------------------------------------------|----------------------------------------------------|
| Output current All range values are come from the ordering code                 | Imax = 0.88Amp<br>Imax = 1.76Amp<br>Imax = 2.50Amp |
| External reference potentiometer                                                | +10V, Imax =5mA                                    |
| Input signal reference                                                          | 0 ÷ 10V                                            |
| I minimum adjustment<br>Gain adjustment                                         | 0 ÷ 50% of Imax<br>30% ÷ 100% of Imax              |
| Ramp time adjustment                                                            | 0 ÷ 10 secondi                                     |
| Operating Ambient temperature<br>Current test point<br>Weight                   | -10C° ÷ +70°C<br>1V = 1Amp<br>Kg. 0, 250           |

### **ORDERING CODE**

CEP

Electronic amplifier Plug version



Single solenoid control



Symmetrical ramp



Max. output current ( Imax )

X = 0.88 Amp

Y = 1.76 Amp

Z = 2.50 Amp



Input reference signal 0 ÷ 10V

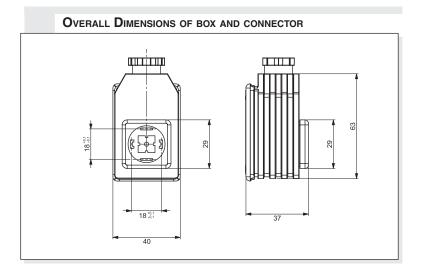


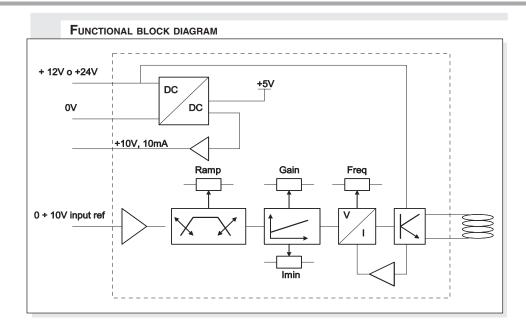
PWM frequency

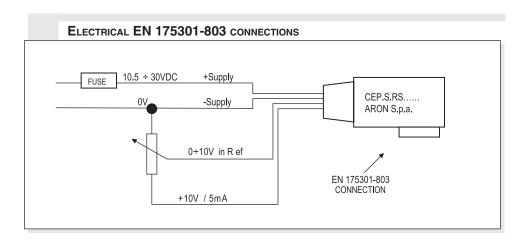
2 = 400 Hz (per XP.3)**3** = 150 Hz (standard)

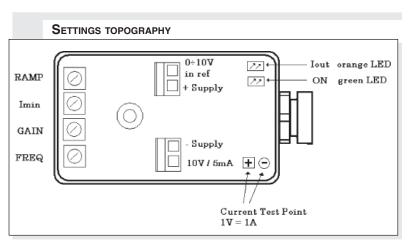


00 00 = No variant


> RW = Electrical circuit protected with silicone paint, for more moisture resistance


2


Serial number


registered mark for industrial environment with reference to the electromagnetic compatibility. European norms:

- EN61000-6-2 general safety norm - industrial environment
- EN61000-6-4 emission general norm - residential environment
- · Product in accordance with RoHS 2011/65/UE Europe Directive.









# REFERENCE SIGNAL Tout 100% Gain 50% V ref

### Power supply and electrical connections

The power supply voltage must be rectified and filtered, whit a capacitor 4700 uF minimum. **Protect the power supply circuit whit 3 A fuse. Respect the polarity supply.** Use the cabling wire whit 0.75 mm² or 1.0 mm² section. In order to facilitate the operation of wires connection, extracts the card from the enclosure, introduce the wires through the gland-nut, connects the wires to the clips and finally to lodge the card to the inside of the connector.

Installation and settings, see instruction manual (code P35160008) supplied with the product.





### REM.S.RA...

| CALIBRATION PROCEDURE | Ch. IX PAGE 5  |
|-----------------------|----------------|
| OVERALL DIMENSIONS    | CH. IX PAGE 10 |
| MOUNTING BASES        | Ch. IX page 10 |

### **ORDERING CODE**

REM

Miniaturized electronic regulator in Octal type container



Single solenoid



Asymmetrical ramp



Maximum output current I  $_{\text{MAX.}}$  (JU variant) X = 0.88 Å (0.80 A)

Y = 1.76 A (1.20 A)

Z = 2.8 A



Input reference (V) see note (\*) below

 $2 = 0 \div + 2 \text{ V}$ 

 $5 = 0 \div + 5 \text{ V}$ 

 $0 = 0 \div + 10 \text{ V}$ 

 $\mathbf{A} = 0 \div 20 \text{ mA}$ 

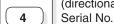


Frequency Dither

1 = 100 Hz (standard, JU var.)

2 = 330 Hz (for XP.3)




Minimum initial current

G = step (normally for XD.\*. and XDP.3 valves) C = continuous (normally for XP.3, XQ.3, XQP.\*. and CXQ.3 valves)



00 = No variant

**DJ** = Double gain setpoint JU = for MHPF and MSPF electrohydraulics modules (directional valves HPV)



(\*) If the input reference is a current signal (mA) the regulator has to be pre-setted in the factory.

- registered mark for industrial environment with reference to the electromagnetic compatibility. European norms:
  - EN61000-6-2 general safety norm
- industrial environment
  - EN61000-6-4 emission general norm
- residential environment
- Product in accordance with RoHS 2011/65/ UE Europe Directive.

### **REM.S.RA...** TYPE ELECTRONIC REGULATORS FOR SINGLE SOLENOID PROPORTIONAL CONTROL VALVES



The electronic control card type REM.S.RA has been designed to drive the "XD.\*.A, XDP.3.A, XP.3, XQ.3, XQP.\*. and CXQ.3" series ARON single solenoid proportional valves without integral position transducer. The control card is enclosed in an "OCTAL" type housing, a typical relay mounting standard. The output stage operates on the pulse width modulation principle (P.W.M.) and is provided with current feedback in order to obtain a solenoid output current proportional to the reference input signal. Output short circuit and supply polarity inversion protection is provided.

Gain, minimum current and rise and fall ramp time adjustments are possible through the corresponding front panel trimming potentiometers, while the output current to the solenoid can be measured via the Valve Current test points, and the ramp operation can be excluded.

The product incorporates a serial interface for adjustment of parameters.

Supply

Overload

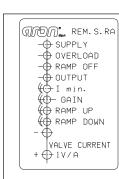
Ramp off

Ramp up

Ramp down

Valve Current

Output


I. min.

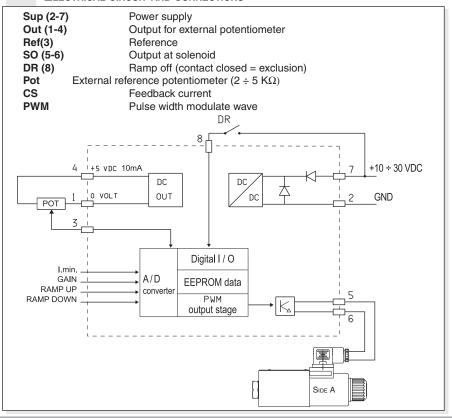
Gain

Pay attention please: electronic regulators must be used in dampness and water protected places.

### Manuals and software

The user and installation manual, the manual for variants DJ/JU and the software ARON DG are available on "products" section of www.brevinifluidpower.com website (put REMS on internal search engine).

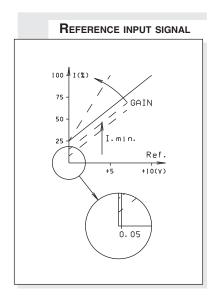



### ADJUSTMENT PANEL

10VDC ÷ 30VDC (green led) Protection against overload (red led) Ramp off (red led) Output (current at solenoid, yellow led) Minimum current adjustment Gain adjustment Rump up adjustment time Rump down adjustment time Current test point at solenoid (1V =1A)

If any field is missing from the ordering code the standard setting is as follows:

- Input ref. = 0÷5V
- Dither 100Hz
- I<sub>min.</sub> = continuous
- $-I_{max.} = 0.8A$


### **E**LECTRICAL CIRCUIT AND CONNECTIONS



#### **E**LECTRONIC REGULATORS FOR SINGLE SOLENOID PROPORTIONAL CONTROL VALVES

| Power supply                                                 | 10 ÷ 30 VDC                                 |
|--------------------------------------------------------------|---------------------------------------------|
| Maximum supply voltage                                       | 36 V                                        |
| Power absorption                                             | 40 W                                        |
| Current output setting by dip switches                       | Imax = 2.8A<br>Imax = 1.76A<br>Imax = 0.88A |
| External potentiometer supply output short circuit protected | +5V 10mA                                    |
| Reference input signal setting by dip switches               | 0 ÷ +2V<br>0 ÷ +5V<br>0 ÷ +10V<br>0 ÷ 20mA  |
| Polarization current adjustment                              | Imin = 0 ÷ 50% Imax                         |
| Current gain adjustment                                      | 50% ÷ 100% Imax                             |
| Ramp time adjustment                                         | 0 ÷ 20 sec                                  |
| Ambient operating temperature                                | -20 ÷ +70°C                                 |
| Current test point                                           | 1 Volt = 1 Ampere                           |
| Weight                                                       | 0.101 Kg                                    |





#### **REM.S.RA...** Instructions for use

#### CALIBRATION PROCEDURE

Connect the card in the proper way following the previous page diagram but  $\underline{without\ powering\ it}$  or in the way following the next page "Typical connections". Turn completely anticlockwise (20 turns about) the trimming potentiometers of Minimu Current ( $l_{\min}$ ) and Ramp Time (Rampup and Ramp-down), and position the reference potentiometer on zero. Before powering the card, ensure that any unforeseen hydraulic system movement cannot cause material damage or injury to people. Power now the card; the green LED should light up.

#### MINIMUM CURRENT OR POLARIZATION CURRENT ADJUSTMENT

Turn slowly the minimum current trimming potentiometer clockwise (I<sub>min</sub>) until an actuator movement can be visually detected. Turn slowly anticlockwise the potentiometer: the minimum current setting will be adjusted correctly when the actuator movement stops. For the REM model with minimum initial threshold current, set the reference signal to a Vref. of 150 mV.

#### MAXIMUM CURRENT GAIN ADJUSTMENT

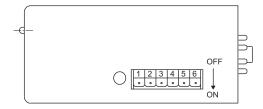
Turn first the ramp time trimming potentiometers clockwise by at least 10 turns, if the system could be damaged by a too fast solenoid operation (<u>evaluate the application carefully</u>). The maximum actuator speed can now be adjusted. Turn the reference signal to its maximum setting and rotate slowly the GAIN trimming potentiometer (GAIN) until the maximum required speed is obtained. The speed can now be varied by moving the potentiometer.

#### RAMP TIME ADJUSTMENT (RAMP-UP E RAMP-DOWN)

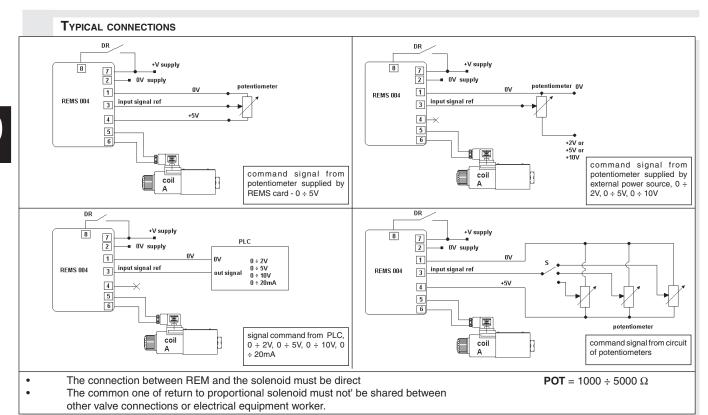
The ramp time is the time taken to pass from the minimum to the maximum current value, and vice versa. It's adjustable from a minimum of 0s up to a maximum of 20s (to reach the maximum current value setted). Turning clockwise the trimming potentiometer, the ramp time increases.

#### Notes:

- The ramp fall time affects the actuator stop position. Moving the reference to zero Volt, the actuator goes on moving till the setted ramp time is elapsed. Therefore it's necessary to adjust it properly.
- When the overload red LED lights up, it will be necessary to switch off the power to the card, switching it on again after having eliminated the cause of overload.


#### REM.S.RA... DIP SWITCHES TABLE

For our proportional valves are recommended the following settings:


|                     |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                               | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GGCCCGGGGCCCCCGGGGC | XD.3.A<br>XDP.3.A<br>XQ.3<br>XQP.3<br>CXQ.3<br>XD.2.A<br>XD.3.A<br>XDP.5.A<br>XDP.3.A<br>XQP.3<br>XQP.5<br>XP.3<br>CXQ.3<br>XD.2.A<br>XD.3.A<br>XD.3.A<br>XD.3.A<br>XD.3.A | DITHER =100Hz | I <sub>max.</sub> = 2.35A with 9V coil I <sub>max.</sub> = 1.4A with 12V coil I <sub>max.</sub> = 1.76A with 12V coil I <sub>max.</sub> = 0.7A with 12V coil I <sub>max.</sub> = 1.25A with 12V coil I <sub>max.</sub> = 0.7A with 2V coil I <sub>max.</sub> = 0.88A with 24V coil |
| G                   | XDP.5.A<br>XDP.3.A                                                                                                                                                         | DITHER =100Hz<br>DITHER =100Hz                                                                                                                                                                                                                                                                                                                                | I <sub>max.</sub> = 1.25A with 24V coil<br>I <sub>max.</sub> = 0.88A with 24V coil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Six miniature switches are mounted internally on one of the REM sides. The REM configuration to suit any particular application can be implemented by setting these switches.

PWM frequency (100 to 330 Hz), minimum (continuous or step) current, reference voltage range and maximum current  $(I_{max})$  can thus be adjusted.



| Function  | DITI      | HER       | l n | nin | Input ref. |          |          | I.max.     |          |           |           |
|-----------|-----------|-----------|-----|-----|------------|----------|----------|------------|----------|-----------|-----------|
| DIP<br>sw | 100<br>Hz | 330<br>Hz | С   | G   | 0÷10<br>V  | 0÷5<br>V | 0÷2<br>V | 0÷20<br>mA | 2.8<br>A | 1.76<br>A | 0.88<br>A |
| 1         | OFF       | ON        |     |     |            |          |          |            |          |           |           |
| 2         |           |           | OFF | ON  |            |          |          |            |          |           |           |
| 3         |           |           |     |     | OFF        | ON       | OFF      | ON         |          |           |           |
| 4         |           |           |     |     | OFF        | OFF      | ON       | OFF        |          |           |           |
| 5         |           |           |     |     |            |          |          |            | OFF      | ON        | OFF       |
| 6         |           |           |     |     |            |          |          |            | OFF      | OFF       | ON        |





#### REM.D.RA..

| CALIBRATION PROCEDURE | Ch. IX PAGE 8  |
|-----------------------|----------------|
| OVERALL DIMENSIONS    | Ch. IX PAGE 10 |
| MOUNTING BASES        | CH. IX PAGE 10 |

#### **ORDERING CODE**

REM

Miniaturized electronic regulator in Undecal type container



Double solenoid



Asymmetrical ramp



Maximum output

current I  $_{\text{MAX.}}$  (JU variant)  $\mathbf{X} = 0.88 \text{ A } (0.80 \text{ A})$ 

Y = 1.76 A (1.20 A)

Z = 2.8 A



Input reference (V) see note (\*) below

 $2 = -2 \div +2 \text{ V}$ 

 $5 = -5 \div +5 \text{ V}$ 

 $0 \div +5 \text{ V}$ 

 $0 = -10 \div +10 \text{ V}$  $A = -20mA \div +20mA$ 

 $0 \div +20mA$ 



Frequency Dither

1 = 100 Hz (standard, JU var.)

2 = 330 Hz



Minimum initial current can only be adjusted in steps



4

**00** = No variant

**DJ** = Duble setpoint gain

JU = for MHPF and MSPF modules (proportional valves HPV)

Serial No.

(\*) If the input reference is a current signal (mA) the regulator has to be pre-setted in the factory.

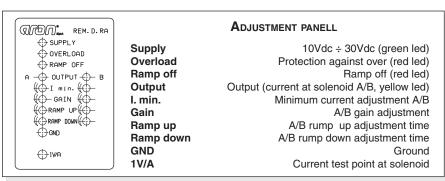
registered mark for industrial environment with reference to the electromagnetic compatibility. European norms: - EN61000-6-2 general safety norm - industrial environment - EN61000-6-4 emission general norm

- residential environment
- Product in accordance with RoHS 2011/65/ UE Europe Directive.

#### REM.D.RA... TYPE ELECTRONIC REGULATORS **DOUBLE SOLENOID PROPORTIONAL CONTROL VALVES**



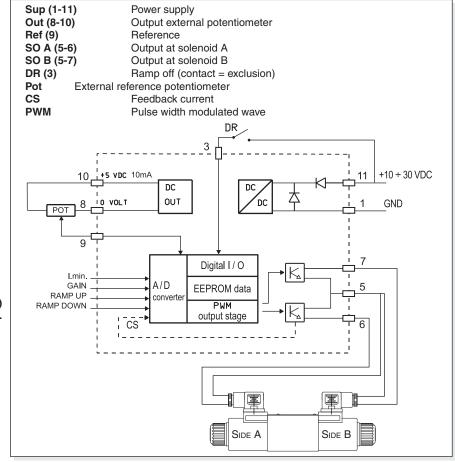
The electronic control card type REM.D.RA has been designed to drive the ARON double solenoid proportional valves series "XD.\*.C...and XDP.3.C" without integral position transducer. The control card is enclosed in an "UNDECAL" type housing, a typical relay mounting standard. The output stage operates on the pulse width modulation principle (P.W.M.) and is provided with current feedback in order to obtain a solenoid output current proportional to the reference input signal.


Output short circuit and supply polarity inversion protection is provided. Gain, minimum current and rise and fall ramp time adjustments are possible through the corresponding front panel trimming potentiometers, while the output current to the solenoid can be measured via the Valve Current test points, and the ramps can be excluded.

The product incorporates a serial interface for adjustment of parameters.

Pay attention please: electronic regulators must be used in dampness and water protected places.

#### Manuals and software


The user and installation manual, the manual for variants DJ/JU and the software ARON DG are available on "products" section of www.brevinifluidpower.com website (put REMD on internal search engine).



If any field is missing from the ordering code the standard setting is as follows:

- Input ref. =  $-5 \div +5V$
- Dither = 100Hz
- $-I_{max} = 0.8A$

#### **ELECTRICAL CIRCUIT AND CONNECTIONS**



| _ |    |   |
|---|----|---|
|   |    | ١ |
| U | ,  | ١ |
|   | 1  | ı |
| _ | ٠. | 4 |

| Power supply                                                 | 10 ÷ 30 VDC                                               |
|--------------------------------------------------------------|-----------------------------------------------------------|
| Maximum supply voltage                                       | 36 V                                                      |
| Power absorption                                             | 40 W                                                      |
| Current output setting by dip switches                       | Imax = 2.8A<br>Imax = 1.76A<br>Imax = 0.88A               |
| External potentiometer supply output short circuit protected | +5V I.max.10mA                                            |
| Reference input signal setting by dip switches               | -2V ÷ +2V<br>-5V ÷ +5V<br>-10V ÷ +10V<br>-20A ÷ +20mA (*) |
| Signal input reference (pin n° 9) setting by dip switches    | 0V ÷ +5V<br>0 ÷ +20mA (*)                                 |
| Polarization current adjustment                              | Imin = 0 ÷ 50% Imax                                       |
| Current gain adjustment                                      | 50% ÷ 100% Imax                                           |
| Ramp time adjustment                                         | 0 ÷ 20 sec                                                |
| Ambient operating temperature                                | -20 ÷ +70°C                                               |
| Current test point                                           | 1 Volt = 1 Ampere                                         |
| Weight                                                       | 0.120 Kg                                                  |

(\*) For the current signal (mA) the regulator has to be pre-setted in the factory.

#### REM.D.RA... INSTRUCTIONS FOR USE

#### CALIBRATION PROCEDURE

Connect the card in the proper way followingthe next page "Typical connections" but  $\underline{\text{without powering it.}}$  Turn completely anticlockwise (20 turns about) the trimming potentiometers of Minimu Current ( $I_{\min}$ ) and Ramp Time (Ramp-up and Rampdown), and position the reference potentiometer on zero. Before powering the card, ensure that any unforeseen hydraulic system movement cannot cause material damage or injury to people. Power now the card; the green LED should light up

#### Two channel minimum current (I MIN) Adjustment (DEAD BAND)

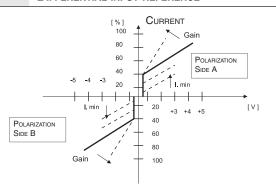
Set the reference signal of approx. Vref +150mV. Than turn clockwise the trimmer until an actuator movement can be visually detected (A channel Output LED lights up). Than turn the same trimmer anticlockwise until the movement stops. Repeat the  $I_{\rm min}$  calibration for the other channel B.Set the reference signal of approx. Vref -150mV (B channel Output LED lights up).

#### **G**AIN ADJUSTMENT

Turn first the ramp time trimming potentiometers (RAMP UP) clockwise by at least 10 turns, if the system could be damaged by a too fast solenoid operation (evaluate the application carefully). The maximum actuator speed can now be adjusted. Turn the reference signal to the maximum positive setting value and rotate slowly the gain trimming potentiometer (GAIN) until the maximum required speed is obtained. The speed can now be varied by moving the potentiometer lever. Repeat the above operations for the other channel after turning the reference signal to the maximum negatif value.

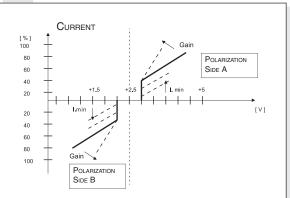
#### RAMP TIME ADJUSTMENT

The ramp time is the time taken to pass from the minimum to the maximum current value, and vice versa. It's adjustable from a minimum of 0s up to a maximum of 20s (to reach the maximum current value setted) separately for channel A and B. Turning clockwise the trimming potentiometer, the ramp time increases.


#### **N**otes

- 1) The ramp fall time affects the actuator stop position. Moving the reference potentiometer to zero Volt, the actuator goes on moving till the setted ramp time is elapsed. Therefore it's necessary to adjust it properly.
- 2) When the overload red LED lights up, it will be necessary to switch off the power to the card, switching it on again after having eliminated the cause of overload.

#### SIGNALS INPUT REFERENCE


The REMD can recive two kinds of command signal inputs, differential input ( non inverting, inverting voltage  $-5V \div +5V$ ), or positive voltage  $(0V \div +5V)$ .

#### DIFFERENTIAL INPUT REFERENCE



For being able to command a proportional valve double solenoid with a differential input command voltage in income at contact 9 of REMD is necessary not to connect the contact 10 of REMD.

#### Positive input reference



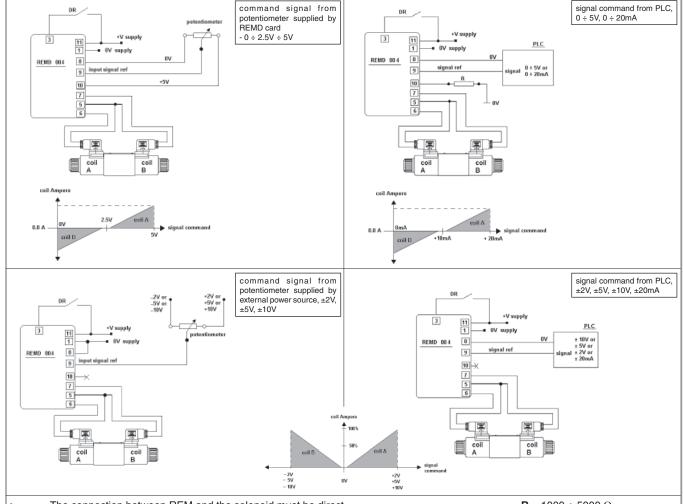
For being able to command a proportional valve double solenoid with a positive command voltage in income at contact 9 of REMD is necessary to connect the contact 10 of REMD a resistive load:

- potentiometer (minimum 1000, max 5000 Ohm) [with external potentiometer command signal, pin n° 9]
- resistor ( minimum 1000, max 5000 Ohm ) [with external reference value generator, e.g. by a PLC , pin  $n^\circ$  9].

#### REM.D.RA... DIP SWITCHE TABLE

Six miniature switches are mounted internally on one of the REM sides. The REM configuration to suit any particular application can be implemented by setting these switches. PWM frequency (100 to 330 Hz), reference voltage range and maximum current ( $I_{max}$ ) can thus be adjusted.

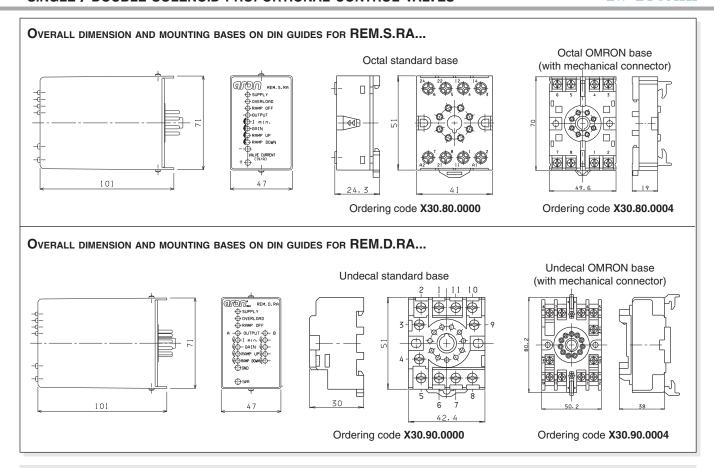
#### For our proportional valves are recommended the following settings:


| G | XD.3.C  | DITHER =100Hz | $I_{max} = 2.35A$ with 9V coils                                |
|---|---------|---------------|----------------------------------------------------------------|
| G | XDP.3.C | DITHER =100Hz | $I_{\text{max.}}^{\text{max.}} = 2.35A \text{ with 9V coils}$  |
| G | XD.2.C  | DITHER =100Hz | $I_{max} = 1.4A$ with 12V coils                                |
| G | XD.3.C  | DITHER =100Hz | $I_{max} = 1.76A$ with 12V coils                               |
| G | XDP.5.C | DITHER =100Hz | $I_{max} = 2.5A$ with 12V coils                                |
| G | XDP.3.C | DITHER =100Hz | $I_{max} = 1.76A$ with 12V coils                               |
| G | XD.2.C  | DITHER =100Hz | $I_{max} = 0.7A$ with 24V coils                                |
| G | XD.3.C  | DITHER =100Hz | $I_{max} = 0.88A$ with 24V coils                               |
| G | XDP.5.C | DITHER =100Hz | $I_{max} = 1.25A$ with 24V coils                               |
| G | XDP.3.C | DITHER =100Hz | $I_{\text{max.}}^{\text{max.}} = 0.88A \text{ with 24V coils}$ |
|   |         |               |                                                                |

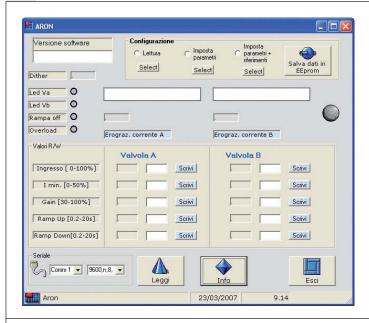
For the version with reference signal in current it needs to be preset in-factory.



| Function  | DITI      | HER       | l min |             | Input ref. |     |                |     | I.max.     |     |           |           |
|-----------|-----------|-----------|-------|-------------|------------|-----|----------------|-----|------------|-----|-----------|-----------|
| DIP<br>sw | 100<br>Hz | 330<br>Hz | G     | -10÷10<br>V | -5÷5<br>V  |     | -20mA<br>÷20mA |     | 0<br>÷20mA |     | 1.76<br>A | 0.88<br>A |
| 1         | OFF       | ON        |       |             |            |     |                |     |            |     |           |           |
| 2         |           |           | ON    |             |            |     |                |     |            |     |           |           |
| 3         |           |           |       | OFF         | ON         | OFF | ON             | ON  | ON         |     |           |           |
| 4         |           |           |       | OFF         | OFF        | ON  | OFF            | OFF | OFF        |     |           |           |
| 5         |           |           |       |             |            |     |                |     |            | OFF | ON        | OFF       |
| 6         |           |           |       |             |            |     |                |     |            | OFF | OFF       | ON        |


#### TYPICAL CONNECTIONS




- The connection between REM and the solenoid must be direct.
- The common one of return to proportional solenoid must not' be shared between other valve connections or electrical equipment worker.

 $R = 1000 \div 5000 \Omega$ 

 $\textbf{POT} = 1000 \div 5000~\Omega$ 



#### ARONDG SOFTWARE

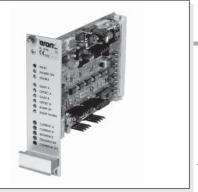


AronDG program for the digital adjustment of the parameters of the REMS and REMD boards.

AronDG program for the digital adjustment of the parameters of the REMS and REMD boards.

The program is used to store (the settings are cancelled when the REM board is switched off) the following parameters:

- Minimum current
- Upward current ramp
- Upward current ramp
- Downward current ramp


Italian/English version: purchase order code P35150003.

NB: the AronDG software can be used with all the REMS and REMD boards that have a TTL connector (production commencement year 2008).





REM connecting at computer with serial cable.

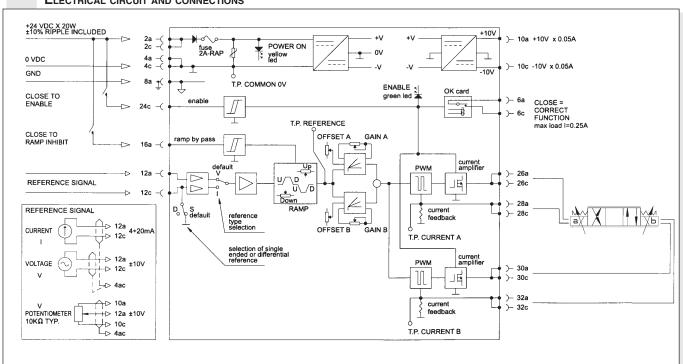


| Instructions       | Ch. IX PAGE 12 |
|--------------------|----------------|
| OVERALL DIMENSIONS | Ch. IX page 12 |

# SE.3.AN21.00... ELECTRONIC CARDS FORMAT EUROCARD FOR PROPORTIONAL VALVES CONTROL CETOP 3

The electronic cards type SE.3.AN.21.00... have been planned for controlling double sole-noid proportional valves of the series XD.3...XDP.3...which do not incorporate the position transducer. The card has a EUROCARD format for being assembled on a connector - type DIN 41612 D 32. The output stage operates on the basis of the Pulse Width Modulation and is subject to the current feedback so that it is possible to obtain an output solenoid current directly proportional to the input signal. The regulator is supplied with standard calibration for proportional valve control. In any case it is possible to optimize the regulations by operating on the relative trimmers placed on the frontal panel (see picture).

• The connection between the card and the solenoid must be direct • The common one of return to proportional solenoid must not be shared between other valve connections or electrical equipment worker.


Registered mark with reference to the electromagnetic compatibility.

European norms: EN50082-1 - General safety norm; EN50081-1 - Emission general norm.

#### ADJUSTMENT PANEL FOR CARD

#### ORDERING CODE Fault Disable SE Electronic card format yellow - 24V DC power supply Power on **EUROCARD DIN 41612 Enable** FAIII T green - card enable POWER ON 3 NG<sub>06</sub> Gain A Solenoid A maximum current regulation ENABLE Offset A Solenoid A offset current regulation GAIN A AN21 Analogic Solenoid B maximum current regulation Gain B OFFSET A GAIN B Offset B Solenoid B offset current regulation 00 Open loop for proportional OFFSET B Ramp Up Ramp up regulation control valves type RAMP UP RAMP DOWN Ramp Down Ramp down regulation XD3.. and XDP3... without transducer **Current A** Solenoid A current test point (1V=1A) CURRENT A **Current B** Solenoid B current test point (1V=1A) CURRENT B 16 Corrente max. REFERENCE Reference Reference signal test point al solenoide: 1.76 A TRANSDUCER Transducer Disable COMMON OV Common 0V Common zero 0 No variant SE3AN21001602 2 Serial No. Made in Italy CE

#### **ELECTRICAL CIRCUIT AND CONNECTIONS**





#### Instructions for use

For proportional valves with code

XD.3.A.\*\*.\*.F.\*\*.2 - XD.3.C.\*\*.\*.F.\*\*.2 XDP.3.A.\*\*.\*.F.\*\*.2 - XDP.3.C.\*\*.\*.F.\*\*.2

#### Power electric supply

24 VDC nominal

22÷30 VDC rectified and stabilized (30W max.)

2A fast-acting fuse is fitted for power circuit protection.

#### Reference voltage

The card gives 1 stabilized voltage values: +10V 50mA (a10) e -10V 50mA (c10).

#### **Available inputs**

± 10V (a12, c12) preseted 4 ÷ 20mA (a12, c12) SW 1 bank:

select I for current reference

signal.

#### Card enable (Enable)

Usually the card is not enable. For enabling it, apply in *c24* a voltage between 22 and 30VDC. Green led signal.

#### Ramp exclusion

Ramps are usually on. In order to disable them apply  $a16\,$  a voltage between 22  $\div$  30VDC.

#### Calibration procedure

Connect the card according to the scheme (See the preceding page). Set zero the reference potentiometer. Before applying the voltage, make sure that the hydraulic system does not move suddenly causing damages to people or things. Apply the voltage to the card: the green led will start blinking. Enable the card and disconnect the ramps (led "FAULT" off) and disable the ramps.

#### Minimum current regulation

<u>A channel</u>: put the reference signal on 3÷5% of the max. value. Turn the minimum current trimmer clockwise  $(I_{\min}A)$  until the actuator moves; then turn the trimmer counterclockwise until the actuator stops.

<u>B channel:</u> repeat the above procedure for the A channel by operating on the  $I_{min}$  B trimmer for negative values of the reference signal.

#### Maximum current regulation

<u>A channel</u>: put the reference signal on the max. (positive) value and turn the gain trimmer ( $I_{max}$  A) slowly, until the max. speed requested is reached. Now the speed can be varied by changing the reference signal.

<u>B channel</u>: repeat the above procedure for the A channel by operating on the  $I_{max}$  B trimmer and by putting the reference signal on the max. negative value.

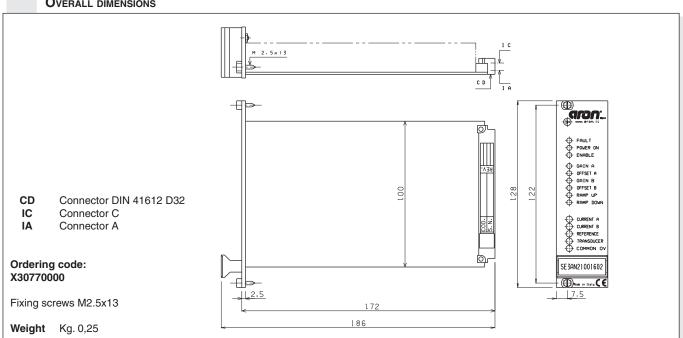
#### Ramp time calibration

Connect the ramps. The ramp time is the time which is necessary for going from the minimum current value to the max. current value and vice versa. The time can be set from a minimum value of 0.1 sec. (ramp excluded) up to a maximum value of 10 sec. (valve max. opening) whether downwards or upwards. By turning the trimmers clockwise the ramp time increases

#### Notes:

The ramp down time influences the lock position of the actuator. By setting to zero the reference signal, the actuator keeps moving until the ramp time set (in a downward direction) has passed. For this reason it is necessary to carry out the adjustment carefully and properly.

#### Solenoid current test point


On the frontal card panel: 1V = 1A

#### Command signal test point

Enables reading in voltage of referencesignal sent to the card. Reading is direct, but of opposite sign, with voltage reference while current conversation is: 4mA = +10V, 20mA = -10V.

9

#### OVERALL DIMENSIONS



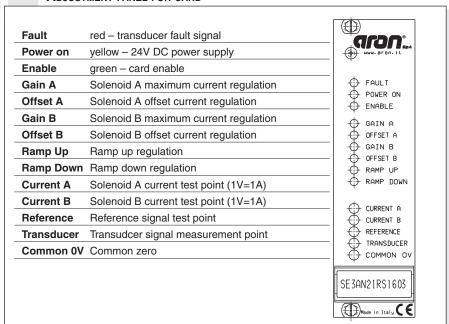
# aron.

#### SE.3.AN21.RS...03

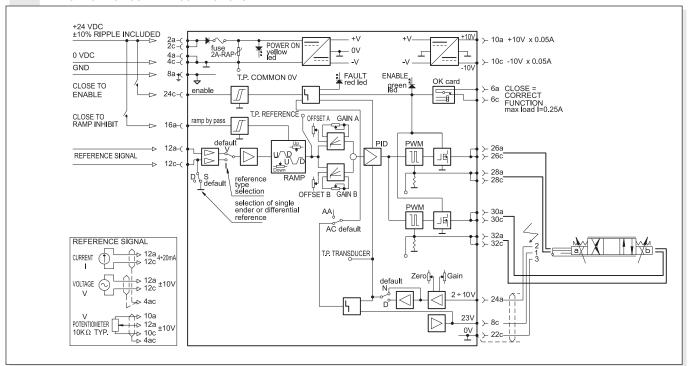
| Instructions       | Ch. IX page 14 |
|--------------------|----------------|
| OVERALL DIMENSIONS | Ch. IX PAGE 14 |

# SE.3.AN21.RS... ELECTRONIC CARDS FORMAT EUROCARD FOR POSITIONAL TRANSDUCER VALVES CONTROL ## brevini

The electronic cards type SE.3.AN.21.RS...serie 3 have been planned for controlling single and double solenoid proportional valves XDC3....serie 2 equipped with position transducer type LVDT. The card has a EUROCARD format for being assembled on a connector type DIN 41612 D 32. The output stage operates on the basis of the Pulse Width Modulation (PWM) and is subject to the current feedback so that it is possible to obtain an output solenoid current directly proportional to the input signal. The regulator is supplied with standard calibration for proportional valve control. The card is equipped with a control module type PI which compares the reference signal with the position transducer signal: the eventual error is used to optimize the regulation. It is possible to carry out further regulations by operating on the relative trimmers placed on the frontal panel (see picture).


• The connection between the card and the solenoid must be direct • The common one of return to proportional solenoid must not be shared between other valve connections or electrical equipment worker.

Registered mark with reference to the electromagnetic compatibility.


European norms: EN50082-1 - General safety norm; EN50081-1 - Emission general norm.

#### **A**DJUSTMENT PANEL FOR CARD

#### **O**RDERING CODE SE Electronic card format **EUROCARD DIN 41612** 3 NG<sub>06</sub> **AN21** Analogic RS Closed loop valves with positional transducer type XDC.3 .... serie 2 16 Max. current at solenoid: 1.76 A 0 No variant 3 Serial No.



#### **E**LECTRICAL CIRCUIT AND CONNECTIONS





#### Instructions for use

For proportional valves with code

XDC.3.C..F.... serie 2 (SE.3.AN21.RS.16...serie 3)

#### Power electric supply

24 VDC nominal

22÷30 VDC rectified and stabilized (30W max.)

2A fast-acting fuse is fitted for power circuit protection.

#### Reference voltage

The card gives 2 stabilized voltage values: +10V 50mA (a10) and -10V 50mA (c10).

#### **Available inputs**

± 10V (a12, c12) preseted 4 ÷ 20mA (a12, c12) SW 1 bank:

select I for current reference signal.

#### Card enable (Enable)

Usually the card is not enable. For enabling it, apply in  $c24\,\mathrm{a}$  voltage between 22 and 30VDC. Green led signal.

#### Ramp exclusion

Ramps are usually on. In order to disable them apply a16 a voltage between  $22 \div 30$  VDC.

#### Calibration procedure

Connect the card according to the scheme (See the preceding page). Set zero the reference potentiometer. Before applying the voltage, make sure that the hydraulic system does not move suddenly causing damages to people or things. Apply the voltage to the card: the green led will start blinking. Enable the card and disconnect the ramps (led "FAULT" off) and disable the ramps.

#### Minimum current regulation

<u>A channel</u>: put the reference signal on  $3 \div 5\%$  of the max. value. Turn the minimum current trimmer clockwise ( $l_{min}$  A) until the actuator moves; then turn the trimmer counterclockwise until the actuator stops.

<u>B channel</u>: repeat the above procedure for the A channel by operating on the  $I_{min}$  B trimmer for negative values of the reference signal.

#### **Maximum current regulation**

<u>A channel</u>: put the reference signal on the max. (positive) value and turn the gain trimmer ( $I_{max}$  A) slowly, until the max. speed requested is reached. Now the speed can be varied by changing the reference signal.

<u>B channel</u>: repeat the above procedure for the A channel by operating on the  $I_{max}$  B trimmer and by putting the reference signal on the max. negative value.

#### Ramp time calibration

Connect the ramps. The ramp time is the time which is necessary for going from the minimum current value to the max. current value and vice versa. The time can be set from a minimum value of 0.1 sec. (ramp excluded) up to a maximum value of 10 sec. (valve max. opening) whether downwards or upwards. By turning the trimmers clockwise the ramp time increases.

#### **Notes**

The ramp down time influences the lock position of the actuator. By setting to zero the reference signal, the actuator keeps moving until the ramp time set (in a downward direction) has passed. For this reason it is necessary to carry out the adjustment carefully and properly.

The card block (FAULT) is automatically reset after that the error has been eliminated

#### **LVDT** connection

See the preceding page:

- terminal 1 della LVDT c8 of the card
- terminal 2 della LVDT a24 of the card
- terminal 3 della LVDT  $\it c22$  of the card

Use screened cable with earth braid.

#### Solenoid current test point

On the frontal card panel: 1V = 1A

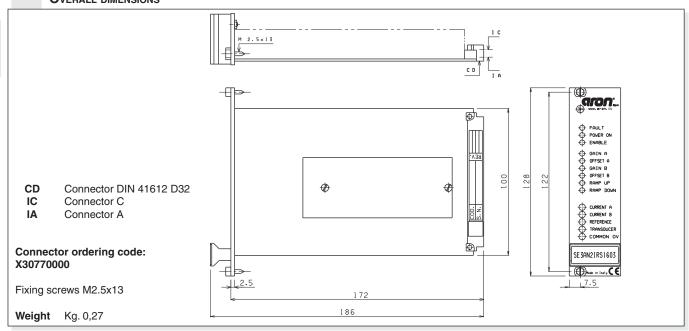
#### Command signal test point

Enables reading in voltage of referencesignal sent to the card. Reading is direct, but of opposite sign, with voltage reference while current conversation is: 4mA = +10V, 20mA = -10V.

#### Feedback signal test point

On the frontal card panel: ± 5V according to the spool position

#### Ambient temperature range


0°÷ 50°C

#### **Electric connections**

The connections concerning the reference potentiometers must be carried out with a wire having a section of  $\geq 0.75 \text{mm}^2$ .

It is advised to use a screened cable with earth braid.

#### OVERALL DIMENSIONS





Brevini Fluid Power S.p.A Via Moscova, 6 - 42124 Reggio Emilia (Italy) Tel. +39 0522 270511 - Fax +39 0522 270660 www.brevinifluidpower.com Product line by:



| LAB3                      |                |
|---------------------------|----------------|
| DIMENSIONI DI INGOMBRO    | CH. IX PAGE 15 |
| LED AND CONNECTORS LAYOUT | CH. IX PAGE 16 |
| Main connector            | CH. IX PAGE 16 |
| ELECTRICAL CONNECTIONS    | CH. IX PAGE 17 |
| MOUNTING EXAMPLE          | Ch. IX PAGE 18 |

#### **O**RDERING CODE

| Code       | Description                                               |
|------------|-----------------------------------------------------------|
| 7.365.1186 | Self Levelling Device for aerial platforms                |
| 7.003.055  | Connector AMP seal 35 pole                                |
| 7.045.068  | Serial cable RS232<br>LAB3, 4mt length                    |
| www.bpe.it | BPE Terminal software downloaded from www. bpe.it website |

#### Included in the furniture:

Installation and use manual

#### LAB3 SELF LEVELLING DEVICE FOR AERIAL PLATFORMS



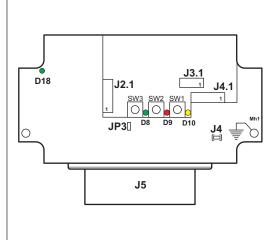
The Self leveling Device LAB3 meets the safety requirements:

- Category 3 (EN954-1) PL d (EN13849-1)

The card has two outputs PWM current feedback to control a proportional valve, a safety relay output to stop the movements, two digital output signal basket inclination, when exceeds

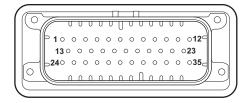
The optimization of working parameters can be easily done via serial connection and user interface software BPE\_Terminal.

Using BPE terminal can make the alignment of the zero level of the LAB3 with the zero tilt basket, set the minimum current to the proportional levelling valve, the current gain, change the operating angle of the two current outputs for the alert of 6° exeeciding basket tilt, and finally adjust the width of the dead zone in correspondence of the zero grade requirements


EMC conformity 2004/108/CE

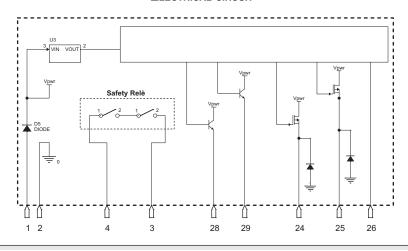
- EN61000-6-2
- EN61000-6-3

| Power supply                                                                                | 9 ÷ 33V                            |
|---------------------------------------------------------------------------------------------|------------------------------------|
| Proportional PWM output                                                                     | current feedback, max load 3A      |
| PWM frequency                                                                               | 4000 Hz                            |
| Dither frequency                                                                            | 100 Hz                             |
| Vertical position dead band                                                                 | Yes                                |
| Coils current offset adjustment                                                             | Yes                                |
| Coils current gain adjustment                                                               | Yes                                |
| Output of safety relay to stops dangerous movements (10° of tilt basket, or device failure) | Max load 2Ampere                   |
| Two independent On/off current outputs (switch on at 6° tilt basket)                        | Max load 1Ampere                   |
| Serial link RS232                                                                           | YES-for adjustment work parameters |
| Working ambient temeprature                                                                 | -40 ÷ +70 °C                       |
| Main connector                                                                              | AMP seal 35 pole                   |
| Protection degree                                                                           | IP66                               |

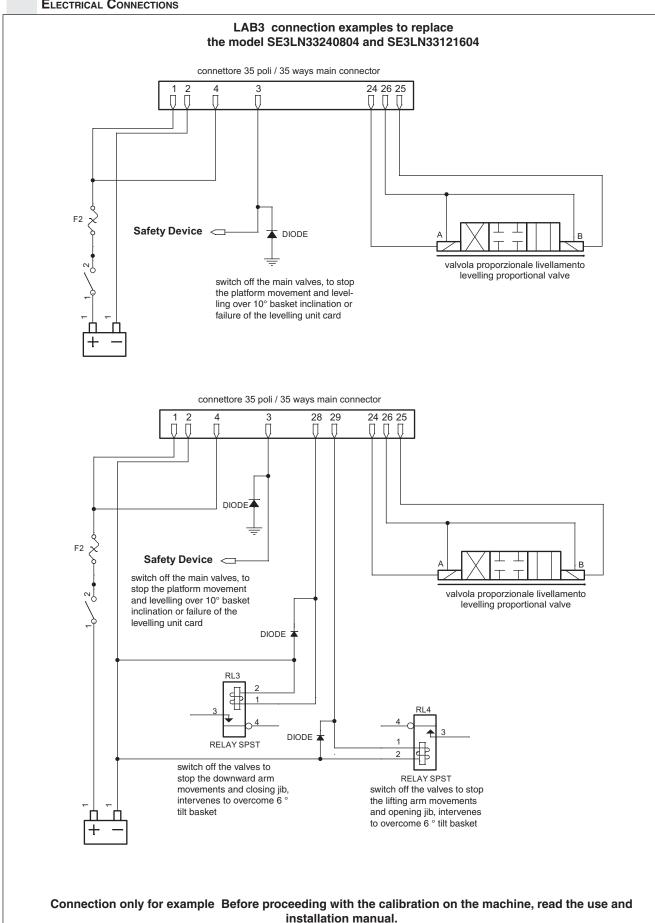

# **OVERALL DIMENSIONS** 140.2 19.8 85.5 2 125 65.3

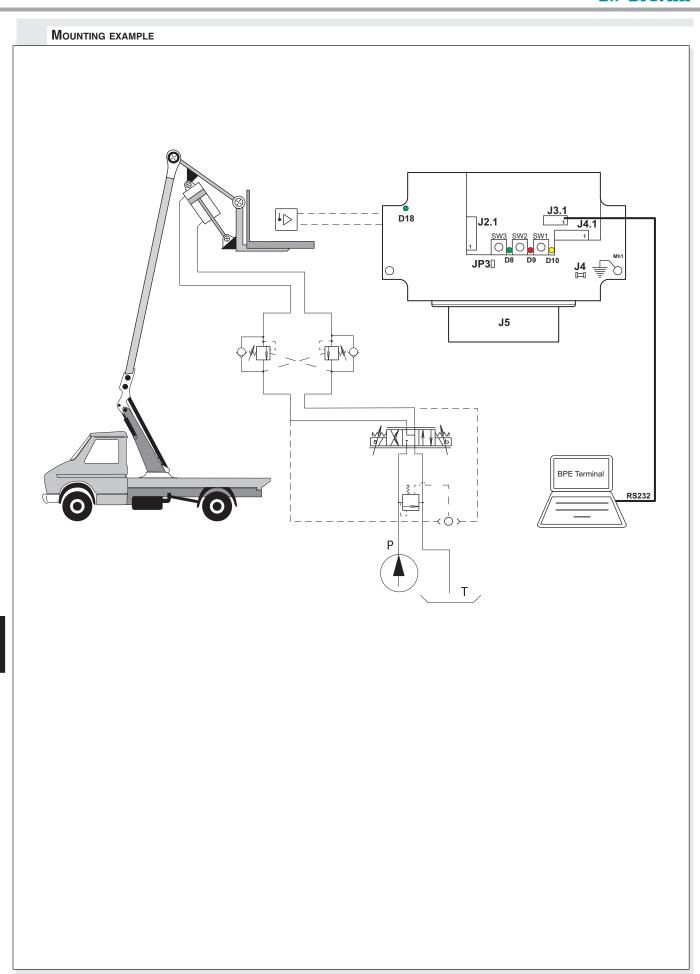
#### LED AND CONNECTORS LAYOUT

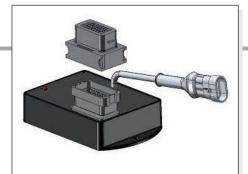



| Conn. | Description                                                           |  |
|-------|-----------------------------------------------------------------------|--|
| J5    | Main connector AMP seal 35 poli                                       |  |
| J3.1  | Inside connector for RS232 communication with (BPE Terminal software) |  |
| J2.1  | Reserved                                                              |  |
| J4.1  | Reserved                                                              |  |
| D18   | Status of power on                                                    |  |
| D8    | Show the status error codes of LAB3 (green)                           |  |
| D9    | Show the status error codes of LAB3 (red)                             |  |
| D10   | Show the status error codes of LAB3 (yellow)                          |  |
| SW1   | Push button, for self calibrating procedures                          |  |
| SW2   | Push button, for self calibrating procedures                          |  |
| SW3   | Push button, for self calibrating procedures                          |  |
| -     |                                                                       |  |

#### MAIN CONNECTOR (WIRING DETAILS)





| Pin | Function                                                                                    | Note                         |
|-----|---------------------------------------------------------------------------------------------|------------------------------|
| 1   | Positiv Supply Voltage                                                                      | Connects to battery positive |
| 2   | Negativ Supply Voltage                                                                      | Connects to battery negative |
| 3   | Output of safety relay to stops dangerous movements (10° of tilt basket, or device failure) | Maximum load 2 Ampere        |
| 4   | Input of safety relay to stops dangerous movements (10° of tilt basket, or device failure)  | Connects to battery positive |
| 24  | Output PWM - coil A                                                                         | Maximum current 3 Ampere     |
| 25  | Output PWM - coil B                                                                         | Maximum current 3 Ampere     |
| 26  | Return of coils A and B                                                                     |                              |
| 28  | On/off current output (switch on at $6^{\circ}$ tilt basket)                                | Maximum load 1 Ampere        |
| 29  | On/off current output (switch on at $6^{\circ}$ tilt basket)                                | Maximum load 1 Ampere        |
|     |                                                                                             |                              |


#### **E**LECTRICAL CIRCUIT



#### **ELECTRICAL CONNECTIONS**







| MAV1152                |                |
|------------------------|----------------|
| Layout                 | Ch. IX PAGE 20 |
| ELECTRICAL CONNECTIONS | Ch. IX PAGE 20 |
| OVERALL DIMENSIONS     | Ch. IX PAGE 20 |
| MOUNTING EXAMPLE       | Ch. IX PAGE 21 |

# MAV1152 ELECTRONIC MODULE FOR INTEGRATED CONTROL OF ONE PROPORTIONAL AND ON/OFF DIRECTIONAL VALVES ### Drevini

The MAV1152 controller unit is used for the control of one proportional solenoids and additional switching valves. The proportional solenoid output is pulse-width-modulated (PWM) and optimally adapted for electric proportional control of Brevini Fluid Power products. The switched outputs are designed for the direct switching of on/off solenoids, relays, and lamps. The MAV unit can managed up to 5 analog input signal and 1 PWM current output + 5x2 switched outputs ( max load 9Amperes ).

The RS232 serial interface and BPE software tool enables the connection of PC for service functions, such as diagnostics, parameter setting or display of process variables.

European norms: EN 61000-6-2, EN61000-6-3, ElectroMagnetic Compatibility (EMC) - industrial environment

#### Optional (on request):

- CANbus port communication;
- on/off output for venting valve on CAT 3 safety

#### Adjustment parameters by RS232 link:

Frequency PWM
Offset current
Gain current
Ramp up time current

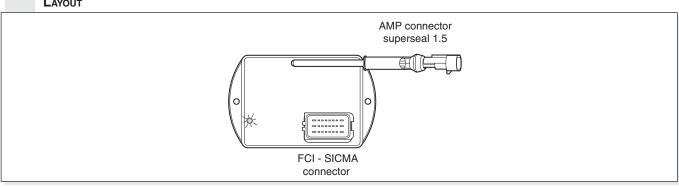
Ramp down time current

Analog input configuration (voltage 0.5 ÷ 4.5V, 1 ÷9V, current 4 ÷ 20mA).

#### **ORDERING CODE**

| Code       | Description                                                                                                   |
|------------|---------------------------------------------------------------------------------------------------------------|
| 7.365.1162 | MAV1152 electronic modu-<br>le for integrated control of<br>one proportional and on/off<br>directional valves |
| www.bpe.it | BPE Terminal software downloaded from www. bpe.it website                                                     |

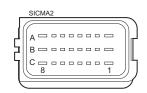
#### SPECIFICATIONS:


| Nominal voltage                  |                               | 12V and 24V          |
|----------------------------------|-------------------------------|----------------------|
| Operating supply voltage         |                               | 9 ÷ 33Vdc            |
| Current consumption              | With load, max                | 9A                   |
| Protection Fuse                  | Only external                 | Rapid fuse 10A       |
| Constant voltage source          | For joystick supply           | 5V                   |
| Analog input                     | Voltage                       | 0.5 ÷ 4.5V           |
| Selectable by                    | Voltage                       | 1 ÷ 9V               |
| serial link                      | Current                       | 4 ÷ 20mA             |
| Switch input                     | High or low active            | Low< 1.5V; high > 6V |
| Proportional PWM output          |                               | 0 ÷ 2A               |
| PWM frequency range              |                               | 70Hz ÷ 250Hz         |
| On/off output (mosfet)           |                               | 3A                   |
| Led indicator                    |                               | Green/red/yellow     |
| Interfaces                       |                               | RS232                |
| Number of analog input           |                               | 5                    |
| Number of switch input           |                               | 2 (standard)         |
| Number of PWM output             |                               | 1                    |
| Number on/off output             | For directional valve         | 10                   |
| Number on/oil output             | For venting valve             | 1                    |
| Protection against short circuit | Input and output              | Yes                  |
| Reverse connect protection       | Power supply                  | Yes                  |
| Operating temperature            |                               | -40 ÷ 70°C           |
| IP protection                    | With mounted mating connector | IP67                 |
| Mating connector                 | FCI - SICMA                   | 24 pole              |

MAV product must be used with joysticks JCFD1GG1 output signal 10-90% or similar.



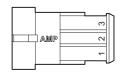
Plug-in connector 24 poles FCI - SICMA (to be ordered separately)


| `         | 1 77                              |
|-----------|-----------------------------------|
| Code      | Description                       |
| 7.003.054 | Connector                         |
| 7.180.403 | Connector with 1 mt. cable length |



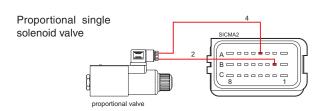
#### **ELECTRICAL CONNECTIONS**

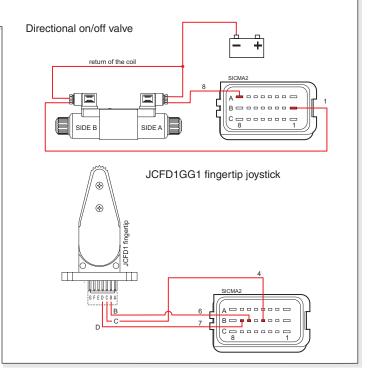
Contacts description: Mating Connector FCI - SICMA


| Contacts description: Mating Connector 1 Or Crown t |     |         |        |     |        |     |     |        |
|-----------------------------------------------------|-----|---------|--------|-----|--------|-----|-----|--------|
| PIN                                                 | 8   | 7       | 6      | 5   | 4      | 3   | 2   | 1      |
| Α                                                   | O1A | Venting | O2A    | O3B | PWM    | O5B | O5A | +      |
|                                                     |     | OUT     |        |     | return |     |     | Supply |
|                                                     |     |         |        |     |        |     |     |        |
| В                                                   | O2B | 0V      | +5V    | AN2 | AN1    | IN3 | PWM | O1B    |
|                                                     |     |         | output |     |        |     | out |        |
|                                                     |     |         |        |     |        |     |     |        |
| С                                                   | ОЗА | AN5     | AN4    | O4A | O4B    | AN3 | IN4 | -      |
|                                                     |     |         |        |     |        |     |     | Supply |
|                                                     |     |         |        |     |        |     |     |        |

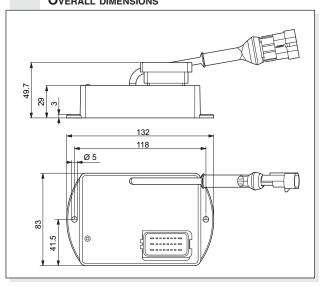


AN = analog input, IN = digital input,

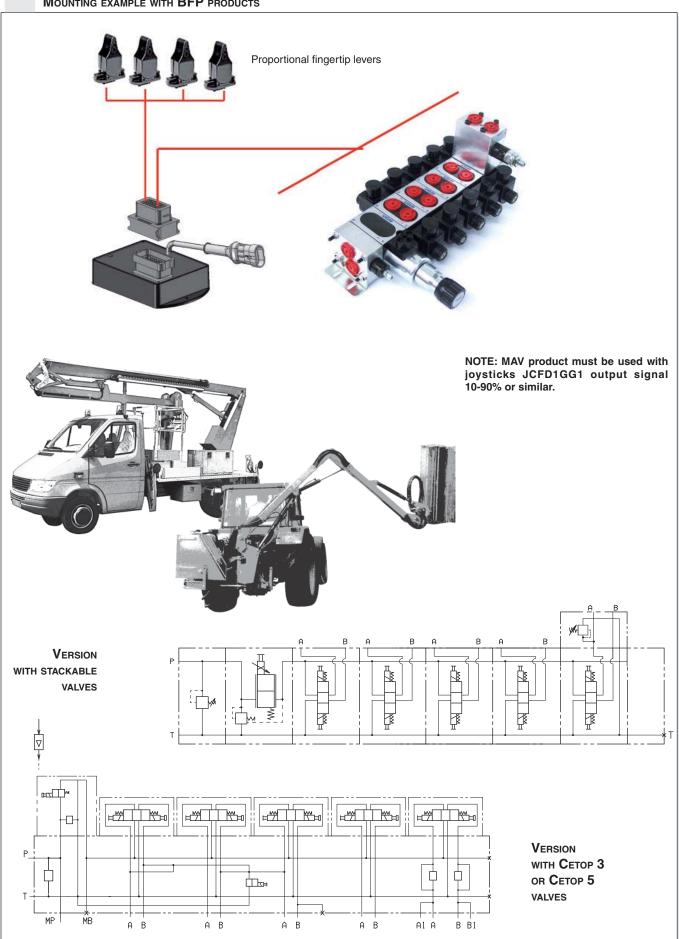

O1A ... O(5)A = on/off output for valve 1 ... (5) coil A O1B ... O(5)B = on/off output for valve 1 ... (5) coil B


Serial Link RS232 connector: AMP superseal 1.5




| PIN 1 | PIN 2 | PIN 3 |
|-------|-------|-------|
| GND   | RX    | TX    |

#### Connection example:






#### **OVERALL DIMENSIONS**



#### MOUNTING EXAMPLE WITH BFP PRODUCTS





| MAV1152HY              |                |  |
|------------------------|----------------|--|
| LAYOUT                 | CH. IX PAGE 23 |  |
| OVERALL DIMENSIONS     | CH. IX PAGE 23 |  |
| ELECTRICAL CONNECTIONS | Ch. IX PAGE 23 |  |
| BPE-TERMINAL SOFTWARE  | Ch. IX PAGE 23 |  |
| CONNECTION EXAMPLES    | Ch. IX PAGE 24 |  |
| MOUNTING EXAMPLE       | CH. IX PAGE 24 |  |
|                        |                |  |

# MAV1152HY ELECTRONIC MODULE FOR INTEGRATED CONTROL OF PROPORTIONAL AND ON/OFF VALVES FOR ARON JOYSTICK ## brevini

The MAV1152HY controller unit is used for the control of one proportional solenoids and additional switching valves. The proportional solenoid output is pulse-width-modulated (PWM) and optimally adapted for electric proportional control of Brevini Fluid Power products. The switched outputs are designed for the direct switching of on/off solenoids, relays, and lamps. The MAV unit can managed 1 PWM current output and 5x2 switched outputs + venting valve (max load 9Amperes).

The RS232 serial interface and BPE software tool enables the connection of PC for service functions, such as diagnostics, parameter setting or display of process variables.

European norms: EN 61000-6-2, EN61000-6-3, ElectroMagnetic Compatibility (EMC) - industrial environment

#### Optional (on request):

- · CANbus port communication;
- on/off output for venting valve on CAT 3 safety

#### Adjustment parameters by RS232 link:

Frequency PWM
Offset current
Gain current
Ramp up time current
Ramp down time current

Analog input configuration (voltage 0.5 ÷ 4.5V, 1 ÷9V, current 4 ÷ 20mA).

#### **ORDERING CODE**

| Code       | Description                                                                                                        |
|------------|--------------------------------------------------------------------------------------------------------------------|
| 7.365.1187 | MAV1152HY electronic<br>module for integrated con-<br>trol of proportional and on/<br>off valves for Aron Joystick |
| www.bpe.it | BPE Terminal software downloaded from www. bpe.it website                                                          |

#### SPECIFICATIONS:

| Nominal voltage                      |                                           | 12V and 24V                                |
|--------------------------------------|-------------------------------------------|--------------------------------------------|
| Operating supply voltage             |                                           | 9 ÷ 33Vdc                                  |
| Current consumption                  | Max                                       | 9A                                         |
| Protection Fuse                      | External                                  | Rapid fuse 10A                             |
| Constant voltage source              | For joystick supply                       | 5V                                         |
| Analog input                         | Voltage                                   | 0 ÷ 5V                                     |
| Selectable by                        | Voltage                                   | 0 ÷ 10V                                    |
| serial link                          | Current                                   | 0 ÷ 20mA                                   |
| Switch input                         | High or low active                        | Low< 1.5V; high > 6V                       |
| Proportional PWM output              |                                           | 0 ÷ 2A                                     |
| PWM frequency range                  |                                           | 70Hz ÷ 250Hz                               |
| On/off output (mosfet)               |                                           | 3A                                         |
| Led indicator                        |                                           | Green/red/yellow                           |
| Interfaces                           |                                           | RS232 and (optional as a request CAN 2.0B) |
| Number of analog input               |                                           | 1                                          |
| Number of switch input               |                                           | 6                                          |
| Number of PWM output                 |                                           | 1                                          |
| Number on/off output                 |                                           | 5x2                                        |
| Switch output for venting valve (3A) | CAT3 safety (PLd) (optional as a request) | 1                                          |
| Protection against short circuit     | Input and output                          | Yes                                        |
| Reverse connect protection           | Power supply                              | Yes                                        |
| Operating temperature                |                                           | -40 ÷ 70°C                                 |
| IP protection                        | With mounted mating connector             | IP67                                       |
| Mating connector                     | FCI - SICMA                               | 24 pole                                    |



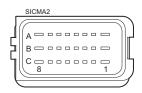
Plug-in connector 24 poles FCI - SICMA (to be ordered separately)

| Code      | Description                       |
|-----------|-----------------------------------|
| 7.003.054 | Connector                         |
| 7.180.403 | Connector with 1 mt. cable length |

#### Default settings:

• Analog input segnal: 0 ÷ 5V

• PWM frequency: 150 Hz


• Min. current PWM output: 400mA

• Max. current PWM output:: 1700mA

# LAYOUT AMP connector superseal 1.5 FCI - SICMA connector

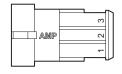
# **O**VERALL DIMENSIONS 49.7 132 118 Ø 5 83

#### **ELECTRICAL CONNECTIONS**



Contacts description: Mating Connector FCI - SICMA

| PIN | 8   | 7              | 6             | 5   | 4                  | 3   | 2          | 1           |
|-----|-----|----------------|---------------|-----|--------------------|-----|------------|-------------|
| Α   | O1A | Venting<br>OUT | O2A           | ОЗВ | PWM<br>re-<br>turn | O5B | O5A        | +<br>Supply |
| В   | O2B | 0V             | +5V<br>output | IN5 | AN1                | IN3 | PWM<br>out | O1B         |
| С   | ОЗА | IN8            | IN7           | O4A | O4B                | IN6 | IN4        | -<br>Supply |


| AN1           | Y signal track of joystick                    |
|---------------|-----------------------------------------------|
| IN5           | Push button n°2 of the joystick               |
| IN6           | Push button n°3 of the joystick               |
| IN7           | Push button n°4 of the joystick               |
| IN8           | Push button n°5 of the joystick               |
| IN3           | Push button n°1 of the joystick               |
| IN4           | Dead man switch joystick                      |
| +5V<br>output | Analogue supply track of the joystick         |
|               | IN5<br>IN6<br>IN7<br>IN8<br>IN3<br>IN4<br>+5V |

AN = analog input,

IN = digital input, O1A = on/off output 1 coil A directional valve

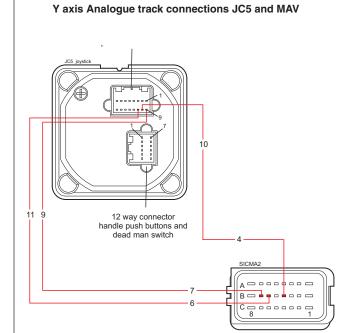
O1B = on/off output 1 coil B directional valve

Serial Link RS232 connector: AMP superseal 1.5



| PIN 1 | PIN 2 | PIN 3 |
|-------|-------|-------|
| GND   | RX    | TX    |

#### **BPE-TERMINAL SOFTWARE**




#### Software - BPE-Termial

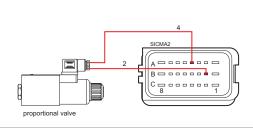
The BPE terminal software, allows to set the MAV. Furthermore with BPE terminal is possible to set all the work parameters, minimum current, maximum current, PWM frequency...

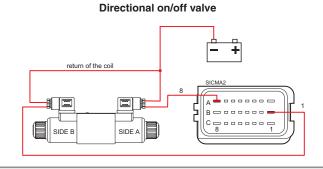
The BPE Terminal software is free downloadable from BPE website www.bpe.it

#### **ELECTRICAL CONNECTIONS**

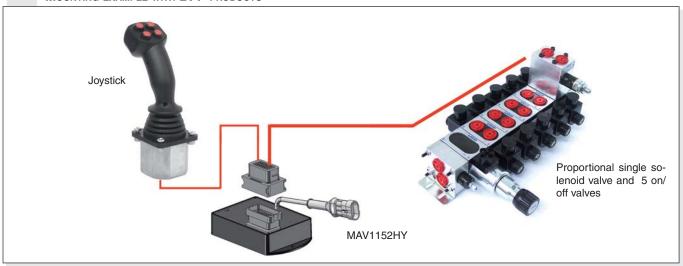


| PIN Joy. | Connect to MAV |
|----------|----------------|
| 9        | B7             |
| 10       | B4             |
| 11       | B6             |


# Dead man switch and push buttons connections 16 way connector potentiometer tracks 12 way connector handle push buttons and dead man switch 12 way connector) joystick Pin 8 and 11, connect to "+ supply voltage" (12V or 24V)


**3** B - - - **-** - - -

C - - - - - - - - - 1


| PIN Joy. | Function     | Connect to MAV |
|----------|--------------|----------------|
| 1        | Button no. 4 | C6             |
| 2        | Button no. 3 | C3             |
| 3        | Button no. 2 | B5             |
| 4        | Button no. 1 | B3             |
| 5        | Button no. 5 | C7             |
| 12       | Dead man     | C2             |







#### MOUNTING EXAMPLE WITH BFP PRODUCTS





| MAV4211               |                |
|-----------------------|----------------|
| LAYOUT                | CH. IX PAGE 26 |
| ELECTRICAL CONNECTINS | CH. IX PAGE 26 |
| OVERALL DIMENSIONS    | CH. IX PAGE 26 |
| MOUNTING EXAMPLE      | CH. IX PAGE 27 |

#### MAV4211 ELECTRONIC MODULE FOR INTEGRATED

CONTROL OF PROPORTIONAL VALVES

এদ brevini

MAV4211: Electronic module for integrated control of proportional valves, bankable valves and proportional directional valves HPV Brevini Fluid Power.

The MAV4211 controller unit is used for the control of proportional solenoids and additional switching functions. The proportional solenoid outputs are pulse-width-modulated (PWM) and optimally adapted for electric proportional control of Brevini Fluid Power products. The switched outputs are designed for the direct switching of relays, lamps and switching solenoids. The MAV unit can managed up to 4 analog input signal and 8 PWM current output (4 PWM current output simultaneous, max load 9Amperes).

The RS232 serial interface and BPE software tool enables the connection of PC for service functions, such as diagnostics, parameter setting or display of process variables.

European norms: EN 61000 - ElectroMagnetic Compatibility (EMC) - industrial environment

#### Optional (on request):

on/off output for venting valve on CAT 3 safety

#### Adjustment parameters by RS232 link:

Frequency PWM
Offset current
Gain current
Ramp up time current
Ramp down time current

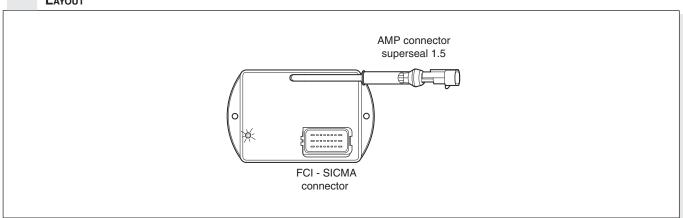
Analog input configuration (voltage 0.5 ÷ 4.5V, 1 ÷9V, current 4 ÷ 20mA).

#### **O**RDERING CODE

| Code       | Description                                                                     |
|------------|---------------------------------------------------------------------------------|
| 7.365.1043 | MAV4211 electronic modu-<br>le for integrated control of<br>proportional valves |
| www.bpe.it | BPE Terminal software downloaded from www. bpe.it website                       |

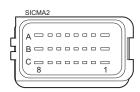
#### SPECIFICATIONS:

| Nominal voltage                        |                               | 12V and 24V          |
|----------------------------------------|-------------------------------|----------------------|
| Operating supply voltage               |                               | 9 ÷ 33Vdc            |
| Current consumption                    | With load, max                | 9A                   |
| Protection Fuse                        | External                      | Rapid fuse 10A       |
| Constant voltage source                | For joystick supply           | 5V                   |
|                                        | Voltage                       | 0.5 ÷ 4.5V           |
| Analog input selectable by serial link | Voltage                       | 1 ÷ 9V               |
| oonar iiriik                           | Current                       | 4 ÷ 20mA             |
| Switch input                           | High or low active            | Low< 1.5V; high > 6V |
| Proportional PWM output                |                               | 0 ÷ 2A               |
| PWM frequency range                    |                               | 70Hz ÷ 250Hz         |
| On/off output (mosfet)                 |                               | 3A                   |
| Led indicator                          |                               | Green/red/yellow     |
| Interfaces                             |                               | RS232 e CAN 2.0B     |
| Number of analog input                 |                               | 4                    |
| Number of switch input                 |                               | 1                    |
| Number of PWM output                   |                               | 8                    |
| Number on/off output                   | For venting valve             | 1                    |
| Protezione da cortocircuito            | Ingresso ed uscite            | Yes                  |
| Protection against short circuit       |                               | Yes                  |
| Operating temperature                  |                               | -40 ÷ 70°C           |
| IP protection                          | With mounted mating connector | IP67                 |
| Mating connector                       | FCI - SICMA                   | 24 pole              |

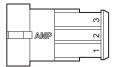

MAV product must be used with joysticks JCFD1GG1 output signal 10-90% or similar.



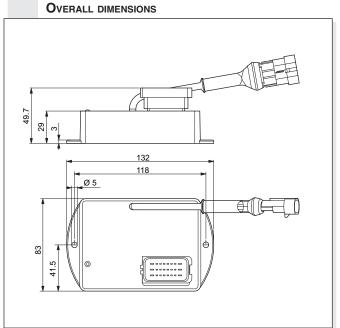
Plug-in connector 24 poles FCI - SICMA (to be ordered separately)

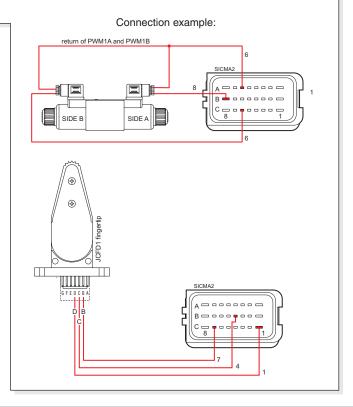

|           | 1 7/                              |
|-----------|-----------------------------------|
| Code      | Description                       |
| 7.003.054 | Connector                         |
| 7.180.403 | Connector with 1 mt. cable length |

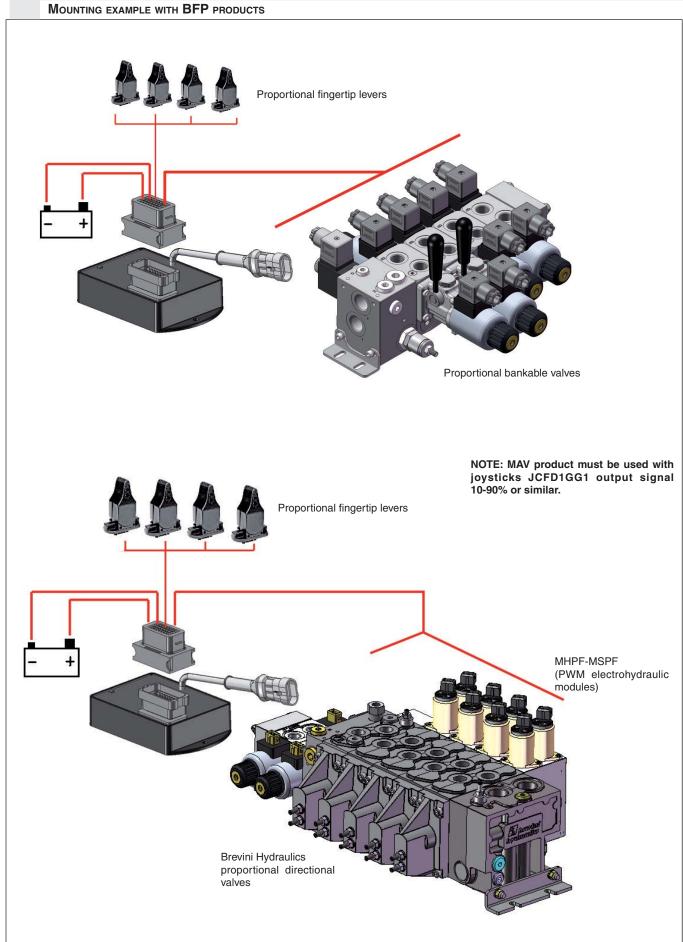
#### LAYOUT




#### **ELECTRICAL CONNECTINS**


#### Contacts description MAV4211: Mating Connector FCI - SICMA PIN 5 8 7 4 2 1 On/off Return Return PWM CAN\_H PWM PWM Α output PWM 4 PWM 1 out 2B out 4B out 4A Supply A AND B A AND B PWM В PWM Return Return Switch Analog Analog PWM out 1B PWM 3 PWM 2 input 1 input 1 input 3 out 3B out 3A A and B A and B С PWM 5V PWM Analog Analog CAN\_L out 2A joystick out 1A Not used input 2 input 4 Supply supply





Serial Link RS232 connector: AMP superseal 1.5



| PIN 1 | PIN 2 | PIN 3 |
|-------|-------|-------|
| GND   | RX    | TX    |











#### JC3D...

#### **O**RDERING CODE

JC

Heavy duty single Joystick

3

Handle (3 switches)

D

Directional switches

1

Functional operation singe axis (Y)

A

With operator present trigger switch

\*\*

00 = No variantsGD = With silicon rubber protection

on the switches handle

1

Serial number

#### JC.3.D... HEAVY DUTY SINGLE JOYSTICK BASE # brevini

This is a rugged joystick with single axis Y potentiometer and ergonomic handle. The joystick has a spring return lever for center position. The panel material for this joystick and thickness must be strong and rigid. The panel thickness should have a dimension of minimum 3.5mm and maximum 6mm. The joystick has two directional micro-switches per Y axis. The handle has 3 pushbuttons and it is possible to have the operator present switch too.

The IP protection of joystick is referred to above mounting panel and it can be max. IP65. N.B. below mounting panel the rating is IP40.

#### **A**PPLICATIONS

The joystick has been designed for aerial platform, agricultural and forestry machinery. The use of this product with the Aron electronic control unit for non contemporary movements gives the maximum advantage for hydraulic solutions controlled with a proportional valve.

**Electrical features** 

Potentiometer resistance  $1.4 \div 2.2 \text{ K}\Omega$ Max. supply voltage VDD = 32V DC Max. supply voltage Y pot 0 - 100% VDD Max. output current 5 mA

**Directional switches** 

Maximum supply voltage VCC = 32V DC
Max. output current 200 mA
Resistive load

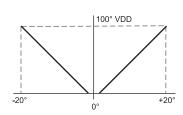
Mechanical features

 $\begin{array}{lll} \mbox{Mechanical angle} & \pm 20^{\circ} \\ \mbox{Maximum operating load} & 390 \ \mbox{N} \\ \mbox{(Measured 130 mm above the mounting surface)} \\ \mbox{Mechanical Life (Y axis)} & 7.500.000 \ \mbox{cycles} \\ \mbox{Weight (handle include)} & 0,900 \ \mbox{Kg} \end{array}$ 

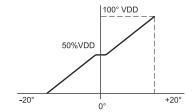
Ambient operating temperature -40°C ÷ +80°C

Protection according to DIN IP65

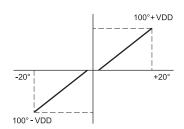
Shocks Level 20G Type ½ sine 6ms


Number of shocks 1350 per axis

Registered mark for industrial environment with reference to the compatibility. European norms:

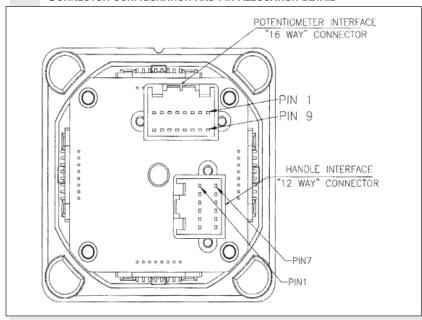

- IEC 61000-4-3 "Electromagnetic immunity"
- EN6550022 "Electromagnetic emissions"
- Product in accordance with RoHS 2011/65/UE Europe Directive.

Connectors and electrical contacts included in the fourniture.


#### POTENTIOMETER OUTPUT AXIS Y

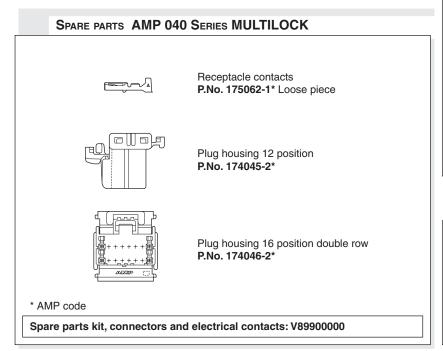


In order to obtain the Y axis output signal from the joystick as indicated in the diagram over it is necessary to connect the pin 9 and 11 of the AMP 16 way connector at +VDD, and to connect the pin 12 of the AMP 16 way connector at 0V.



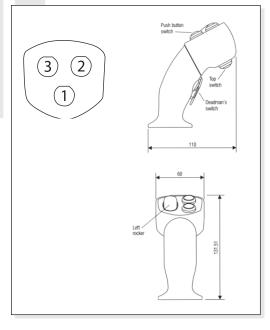

IIn order to obtain the Y axis output signal from the joystick as indicated in the diagram over it is necessary to connect the pin 9 of the AMP 16 way connector at 0V, and to connect the pin 11 of the AMP 16 way connector at +VDD.



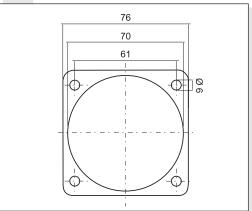

In order to obtain the Y axis output signal from the joystick as indicated in the diagram over it is necessary to connect the pin 9 of the AMP 16 way conector at -VDD, and to connect the pin 11 of the AMP 16 way connector at +VDD.

#### CONNECTOR CONFIGURATION AND PIN ALLOCATION DETAIL

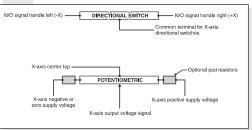



## FROM THE 16 WAY PRIMARY POTENTIOMETER CONNECTIONS SINGLE POTENTIOMETER PER Y AXIS

| AMP |   | Pin allocation description |
|-----|---|----------------------------|
| 1   | Υ | Switch track forward       |
| 9   | Υ | Pot track back             |
| 10  | Υ | Pot track signal           |
| 11  | Υ | Pot track forward          |
| 12  | Υ | Pot track centre tap       |
| 13  | Υ | Switch track common        |
| 14  | Υ | Switch track back          |
| 16  | Υ | Switch track centre on     |
|     |   |                            |




# 12 WAY HANDLE CONNECTIONS AMP Pin allocation description 2 Switch 3 - contact N/O 3 Switch 2 - contact N/O 4 Switch 1 - contact N/O 8 Operator present trigger switch 11 Switch track common 12 Operator present trigger switch


#### **OVERALL DIMENSIONS**



#### HANDLE ADAPTER PLATE



#### **A**NALOGUE JOYSTICK CONTROLLERS







#### JC5D...

#### **O**RDERING CODE

JC

Heavy duty single Joystick

5

Handle (5 switches)

D

Directional switches

\*

Functional operation

1 = singe axis (Y)

2 = dual axis (XY)

A = With operator present trigger switch

**B** = Without operator present trigger switch

00

No variants

Serial number 1

#### JC.5.D... HEAVY DUTY SINGLE JOYSTICK BASE # brevini

This is a rugged joystick with potentiometer and ergonomic handle. The joystick has a spring return lever for center position. Single axis Y or dual axes XY are available. The panel material for this joystick and thickness must be strong and rigid. The panel thickness should have a dimension of minimum 3.5mm and maximum 6mm. The joystick has two directional micro-switches per axis. The handle has 5 pushbuttons and it is possible to have the operator present switch too.

The IP protection of joystick is referred to above mounting panel and it can be max. IP65. N.B. below mounting panel the rating is IP40.

#### **A**PPLICATIONS

The joystick has been designed for aerial platform, agricultural and forestry machinery. The use of this product with the Aron electronic control unit for non contemporary movements gives the maximum advantage for hydraulic solutions controlled with a proportional valve.

**Electrical features** Potentiometer resistance Max. supply voltage

VDD = 32V DC 0 - 100% VDD Max. supply voltage X and Y pot Max. output current

**Directional switches** 

VCC = 32V DC Maximum supply voltage Max. output current 200 mA Resistive load

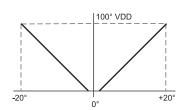
 $1.4 \div 2.2 \text{ K}\Omega$ 

5 mA

Mechanical features

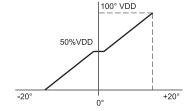
Mechanical angle  $\pm 20^{\circ}$ Maximum operating load 390 N (Measured 130 mm above the mounting surface) Mechanical Life (X and Y axis) 7.500.000 cycles Weight (handle include) 0,900 Kg

-40°C ÷ +80°C Ambient operating temperature Protection according to DIN IP65 Shocks


Level 20G Type ½ sine 6ms Number of shocks 1350 each axis

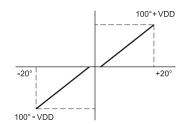
Registered mark for industrial environment with reference to the compatibility. European norms:

- IEC 61000-4-3 "Electromagnetic immunity"
- EN6550022 "Electromagnetic emissions"
- Product in accordance with RoHS 2011/65/UE Europe Directive.


Connectors and electrical contacts included in the fourniture.

#### POTENTIOMETER OUTPUT AXIS X,Y

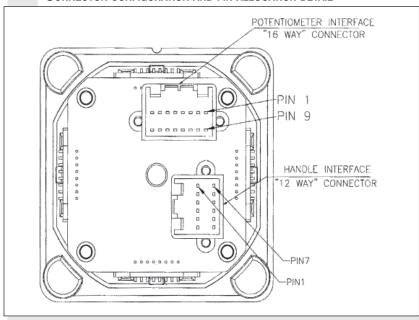



In order to obtain the output signal from the joystick as indicated in the diagram over it is necessary:

- for the X axis output signal, connect the pin 3 and 5 of the AMP 16 way connector at +VDD, and connect the pin 6 of the AMP 16 way connector at 0V.
- for the Y axis output signal, connect the pin 9 and 11 of the AMP 16 way connector at +VDD, and connect the pin 12 of the AMP 16 way connector at 0V.



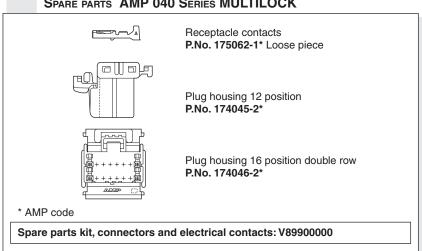
In order to obtain the output signal from the joystick as indicated in the diagram over it is necessary:


- for the X axis output signal, connect the pin 3 of the AMP 16 way connector at 0V, and connect the pin 5 of the AMP 16 way connector at +VDD.
- for the Y axis output signal, connect the pin 9 of the AMP 16 way connector at 0V, and connect the pin 11 of the AMP 16 way connector at +VDD.



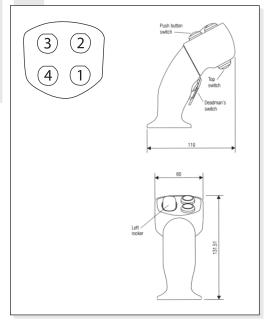
In order to obtain the output signal from the joystick as indicated in the diagram over it is necessary:

- for the X axis output signal, connect the pin 3 of the AMP 16 way connector at -VDD, and connect the pin 5 of the AMP 16 way connector at +VDD.
- for the Y axis output signal, connect the pin 9 of the AMP 16 way conector at -VDD, and connect the pin 11 of the AMP 16 way connector at +VDD.

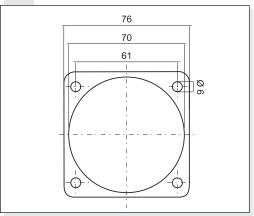

#### CONNECTOR CONFIGURATION AND PIN ALLOCATION DETAIL



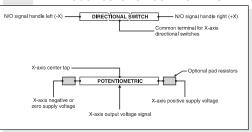
| 16   | WAY | DDIMADV | POTENTIOMETER | CONNECTIONS |
|------|-----|---------|---------------|-------------|
| - 10 | WAY | PHIMARY | POTENTIONETER | COMMECHONS  |


| 10 WALL THIMMALL FOR ELECTION CONTINUED TO THE |   |                               |  |
|------------------------------------------------|---|-------------------------------|--|
| AMP                                            |   | Pin allocation description    |  |
|                                                |   | Single potentiometer per axis |  |
| 1                                              | Υ | Switch track forward          |  |
| 2                                              | Χ | Switch track centre on        |  |
| 3                                              | Χ | Pot track left                |  |
| 4                                              | Χ | Pot track signal              |  |
| 5                                              | Χ | Pot track right               |  |
| 6                                              | Χ | Pot track centre tap          |  |
| 7                                              | Χ | Switch track common           |  |
| 8                                              | Χ | Switch track left             |  |
| 9                                              | Υ | Pot track back                |  |
| 10                                             | Υ | Pot track signal              |  |
| 11                                             | Υ | Pot track forward             |  |
| 12                                             | Υ | Pot track centre tap          |  |
| 13                                             | Υ | Switch track common           |  |
| 14                                             | Υ | Switch track back             |  |
| 15                                             | Х | Switch track right            |  |
| 16                                             | Υ | Switch track centre on        |  |

#### SPARE PARTS AMP 040 SERIES MULTILOCK




#### 12 WAY HANDLE CONNECTIONS AMP Pin allocation description Switch 4 - contact N/O 2 Switch 3 - contact N/O 3 Switch 2 - contact N/O 4 Switch 1 - contact N/O 5 Switch 5 - contact N/O 8 Operator present trigger switch 11 Switch track common 12 Operator present trigger switch


#### **OVERALL DIMENSIONS**



#### HANDLE ADAPTER PLATE



#### **A**NALOGUE JOYSTICK CONTROLLERS







JC.F.D...

#### ORDERING CODE

JC

Joystick



Fingertip



Directional switches



Singolo asse

\*\*

1

**00** = No variants

**GG** = 10-90% output signal

Serial number

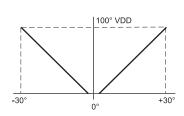
#### JC.F.D... SINGLE-AXIS FINGERTIP JOYSTICK # brevini

Developed for applications where ergonomics and system integrity are paramount, the JCFD is a compact, low profile joystick that provides precise fingertip control. Designed for use with an electronic controller, the plastic track generates analogue and switched reference signals, proportional to the distance and direction over which the handle is moved. The analogue output is configured to provide signals for fault detection circuits within the controller. A center tap on the analogue track provides an accurate voltage reference for the center position or a zero point for a bipolar supply voltage.

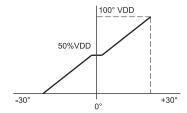
| Electrical features            |                  |
|--------------------------------|------------------|
| Potentiometer resistance       | 5 ΚΩ             |
| Max. supply voltage            | VDD = 32V DC     |
| Output signal Y pot            | 0 - 100% VDD     |
| Output signal Y pot GG variant | 10 - 90% VDD     |
| Max. output current            | 2mA              |
| Directional switches           |                  |
| Maximum supply voltage         | VCC = 32V DC     |
| Max. output current            | 2mA              |
|                                | Resistive load   |
| Mechanical features            |                  |
| Mechanical angle               | ± 30°            |
| Maximum operating load         | 50 N             |
| (Measured 130 mm above the mo  | ounting surface) |
| Mechanical Life                | 5.000.000 cycles |
| Weight                         | 0,045 Kg         |
| Ambient operating temperature  | -25°C ÷ +70°C    |

Registered mark for industrial environment with reference to the compatibility. European norms:

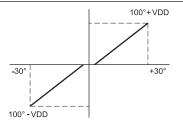
IP66


- IEC 61000-4-3 "Electromagnetic immunity"
- EN6550022 "Electromagnetic emissions"

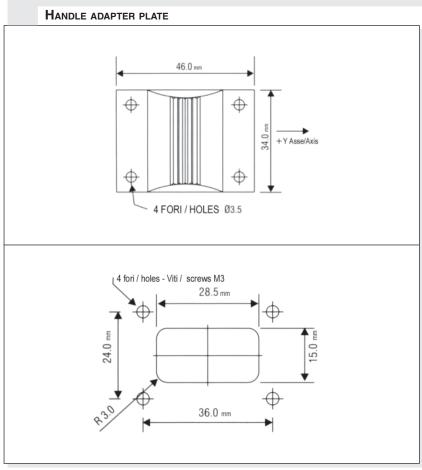
Protection according to DIN

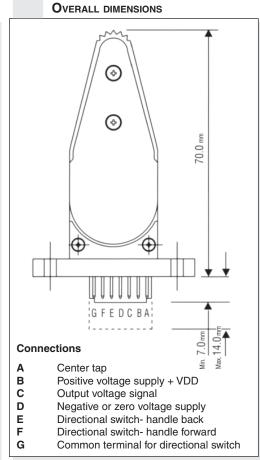

 Product in accordance with RoHS 2011/65/UE Europe Directive.

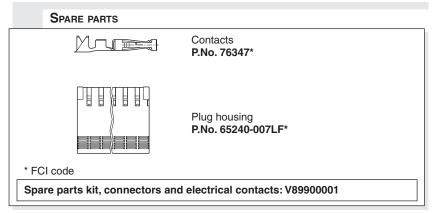
Connectors and electrical contacts included in the fourniture.

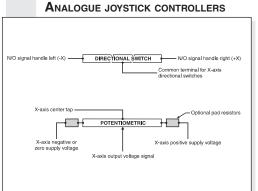

#### **OUTPUT VOLTAGE SIGNAL**




In order to obtain the output signal from the joystick as indicated in the diagram it is necessary: connect the Pin B and Pin D of the connector at +VDD, and connect the Pin A at 0V.





In order to obtain the output signal from the joystick as indicated in the diagram it is necessary: connect the Pin B of the connector at +VDD, and connect the Pin D at 0V.




In order to obtain the output signal from the joystick as indicated in the diagram it is necessary: connect the Pin B of the connector at +VDD, and connect the Pin D at -VDD.









#### **A**BBREVIATIONS

|            | ADDREVIATIONS               |
|------------|-----------------------------|
| AP         | HIGH PRESSURE CONNECTION    |
| AS         | Phase Lag (DEGREES)         |
| BP         | Low pressure connection     |
| С          | STROKE (MM)                 |
| CH         | ACROSS FLATS                |
| Сн         | INTERNAL ACROSS FLATS       |
| DA         | AMPLITUDE DECAY (DB)        |
| DР         | DIFFERENTIAL PRESSURE (BAR) |
| F          | Force (N)                   |
| <b>l%</b>  | INPUT CURRENT (A)           |
| M          | Manometer connection        |
| NG         | Knob turns                  |
| OR         | SEAL RING                   |
| Р          | LOAD PRESSURE (BAR)         |
| PARBA      | PARBAK RING                 |
| PL         | Parallel connection         |
| PR         | REDUCED PRESSURE (BAR)      |
| Q          | FLOW (L/MIN)                |
| <b>Q</b> P | Pump flow (L/min)           |
| SE         | ELASTIC PIN                 |
| SF         | Ball                        |
| SR         | Series connection           |
| X          | PILOTING                    |
| Υ          | Drainage                    |

#### Low / HIGH PRESSURE UNITS



| BA.60    |              |
|----------|--------------|
|          | Ch. X PAGE 2 |
| BA.130   |              |
|          |              |
|          | CH. X PAGE 5 |
| BSC.5.69 | Ch. X PAGE 5 |

#### SPECIAL SUBPLATE MOUNTINGS WITH AUTOMATIC EXCLUSION REGENERATING CIRCUIT



| BS5.RGA       |              |
|---------------|--------------|
|               | CH. X PAGE 8 |
| BS5.RGI       |              |
|               | CH. X PAGE 8 |
|               | CH. A PAGE O |
| AD.5.I.P.2T.1 | CH. A PAGE 0 |



| BA.60                  |                |
|------------------------|----------------|
| BA.06/10               | Ch. XI PAGE 2  |
| CMP.10                 | Ch.VII PAGE 30 |
| BC.06.30/32 / BC.06.40 | Ch.VII PAGE 15 |
| BC.5.30/32             | Ch.VII PAGE 26 |
| BC.5.40                | Ch.VII PAGE 25 |
| CETOP 3/NG06           | Ch. I PAGE 5   |
| CETOP 5/NG10           | Ch. I page 29  |

#### **O**RDERING CODE

BA

Low/high pressure base

60

Capacity I/min

U\*

TDouble pump exclusion valve setting

2 = max. 30 bar

3 = max. 75 bar

4 = max. 100 bar

(c)

Type of adjustment: grub screw

\*

Max. pressure valve setting

1 = max. 50 bar

2 = max. 150 bar

**3** = max. 320 bar

\*\*

**00** = No variant

V1 = Viton

**(1**)

Serial No.

#### MODULE ORDERING CODE

BA

Subplate mounting

\*\*

**06** = CETOP 3/NG06

\*\*

**10** = CETOP 5/NG10

\*\*

Type of module:

62 = side CETOP interface

66 = top CETOP interface

**68** = with upper threaded

connectors (only for CETOP 5)

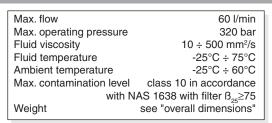
\*\*

1

00 = No variant

V1 = Viton

Serial No.


#### BA.60...

#### Low / HIGH PRESSURE UNITS

The low/high pressure groups are usually employed in hydraulic systems fed by dual pumps that form

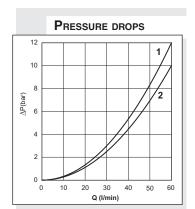
The main feature of this system consists in being able to set a pressure value in correspondence of which one of the two pumping sections is changed over to drain.

a single pressure circuit.



These groups are fitted with an adjustable maximum pressure valve to protect the hydraulic system.

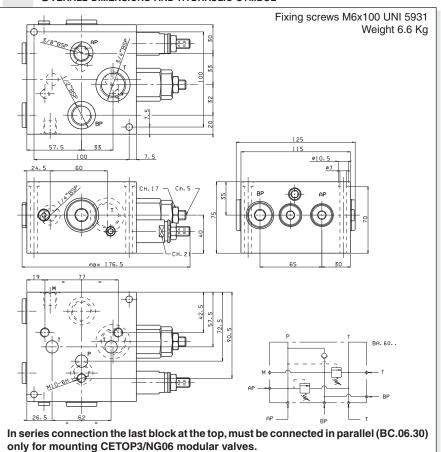
3 pressure adjustment ranges are available for the exclusion valve, which is fitted with cast iron or steel seat, while the maximum pressure valve type CMP10 is available with 3 adjustment ranges.


### Minimum permissible setting pressure depending on the spring: see cartridge valve type CMP10.

The series connection modular small block (BC.06.32/BC.5.32) or the parallel connection type (BC.06.30/BC.5.30) with blanking plate (BC.06.40/BC.5.40) and the solenoid valve should be ordered separately.

For the subplate mounting ordering code see "Subplates" chapter; whilst for the valve ordering code see "Directional control valves" chapter.

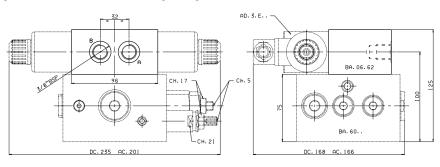
The CETOP3/NG06 connector blocks have 2 rods, the CETOP5/NG10 have 3 rods.

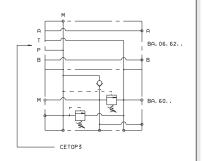

BC.10.06 = reduction plate to be used only for assembly of modular blocks CETOP3/NG06.



খদ brevini

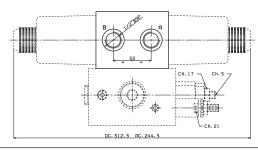
| Curve | 1= BP → P              |
|-------|------------------------|
|       | $2 = BP \rightarrow T$ |

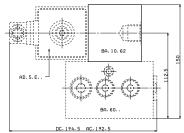

#### OVERALL DIMENSIONS AND HYDRAULIC SYMBOL

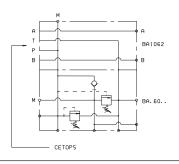



#### OVERALL DIMENSIONS AND HYDRAULIC SYMBOLS

#### Side mounting for single solenoid valve CETOP3/NG06 (connector block BA.06.62)

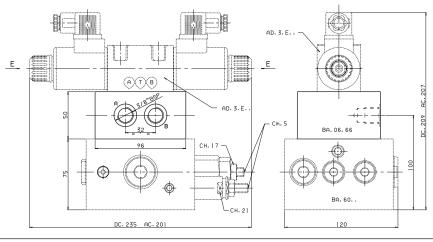

Fixing screws M10x55 UNI 5931 - Weight 2 Kg

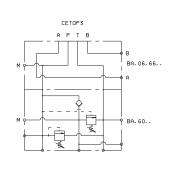



#### SIDE MOUNTING FOR SINGLE SOLENOID VALVE CETOP5/NG10 (CONNECTOR BLOCK BA.10.62)

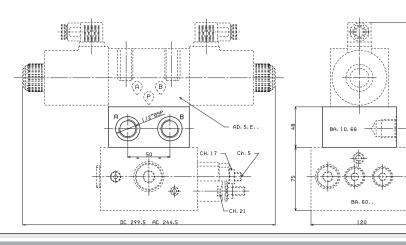
Fixing screws M10x80 UNI 5931 - Weight 3 Kg

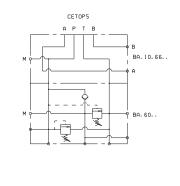





#### TOP MOUNTING FOR SINGLE SOLENOID VALVE CETOP3/NG06 (CONNECTOR BLOCK BA.06.66)


Fixing screws M10x50 UNI 5931 - Weight 2.5 Kg

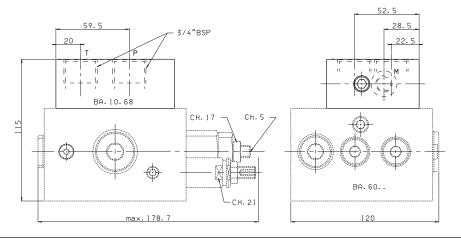


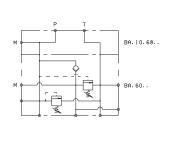



#### TOP MOUNTING FOR SINGLE SOLENOID VALVE CETOP5/NG10 (CONNECTOR BLOCK BA.10.66)

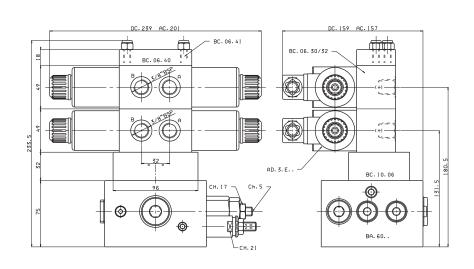
Fixing screws M10x50 UNI 5931 - Weight 2.4 Kg

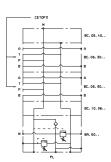


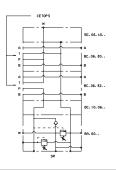




10

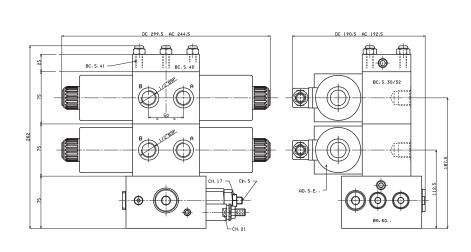
#### OVERALL DIMENSIONS AND HYDRAULIC SYMBOLS

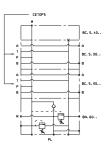

#### Mounting with threaded connectors (connector block BA.10.68)

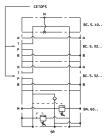

Fixing screws M10x45 UNI 5931- Weight 1.6 Kg







#### MULTIPLE MOUNTING WITH MODULAR COMPONENT CONNECTOR BLOCKS CONNECTED IN SERIES OR PARALLEL CETOP3/NG06






#### MULTIPLE MOUNTING WITH MODULAR COMPONENT CONNECTOR BLOCKS CONNECTED IN SERIES OR PARALLEL CETOP5/NG10











| BA.130       |                |  |
|--------------|----------------|--|
| BA.10        | Ch.XI PAGE 5   |  |
| CMP.10       | Ch.VII PAGE 30 |  |
| BSC.5.69     | Ch.XI PAGE 7   |  |
| BC.5.30/32   | Ch.VII PAGE 26 |  |
| BC.5.40      | Ch.VII PAGE 25 |  |
| CETOP 5/NG10 | Ch. I page 29  |  |
| ADP.5.E      | Ch. I page 37  |  |

#### **O**RDERING CODE

ВА

Low/high pressure base

130

Capacity I/min

์ U\*

Double pump exclusion valve setting

 $2 = 20 \div 90 \text{ bar}$ 

 $3 = 50 \div 190 \text{ bar}$ 

С

Type of adjustment: grub screw

\*

Max. pressure valve setting

**1** = max. 50 bar

2 = max. 150 bar

3 = max. 320 bar

00

No variant

1

Serial No.

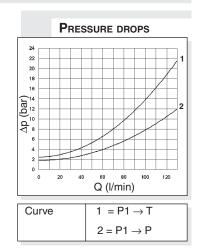
#### BA.130... Low / HIGH PRESSURE UNITS

খ্যদ brevini

The low/high pressure groups are usually employed in hydraulic systems fed by dual pumps that form a single pressure circuit. The main feature of this system consists in being able to set a pressure value in correspondence of which one of the two pumping sections is changed over to drain.

These groups are fitted with an adjustable maximum pressure valve to protect the hydraulic system.

2 pressure adjustment ranges are available for the exclusion valve, which is fitted with a steel seat, while the maximum pressure valve type CMP10 is available with 3 adjustment ranges.


# Minimum permissible setting pressure depending on the spring: see cartridge valve type CMP10.

The series connection modular small block (BC.5.32) or the parallel connection type (BC.5.30) with blanking plate (BC.5.40) and the solenoid valve should be ordered separately.

For the subplate mounting ordering code see "Subplates" chapter; whilst for the valve ordering code see "Directional control valves" chapter.

The CETOP5/NG10 connector blocks have 3 rods.

 $\begin{array}{cccc} \text{Max. flow} & \text{130 l/min} \\ \text{Max. operating pressure} & \text{320 bar} \\ \text{Fluid viscosity} & \text{10} \div 500 \text{ mm}^2\text{/s} \\ \text{Fluid temperature} & -25^{\circ}\text{C} \div 75^{\circ}\text{C} \\ \text{Ambient temperature} & -25^{\circ}\text{C} \div 60^{\circ}\text{C} \\ \text{Max. contamination level} & \text{class 10 in accordance} \\ & & \text{with NAS 1638 with filter } \Omega_{25}^{-275} \\ \text{Weight} & \text{8 Kg} \\ \end{array}$ 



#### MODULE ORDERING CODE

ВА

Subplate mounting

10

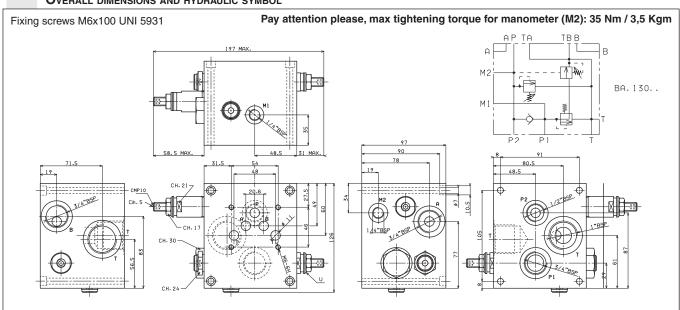
CETOP 5/NG10

\*\*

Type of module:

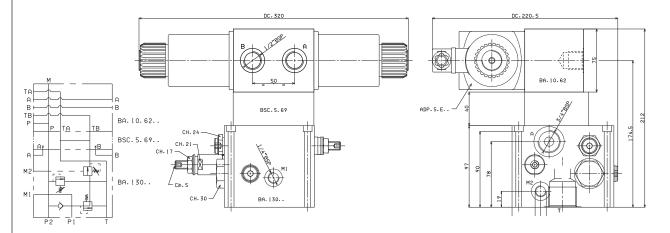
**62** = side CETOP interface

**68** = with upper threaded connectors

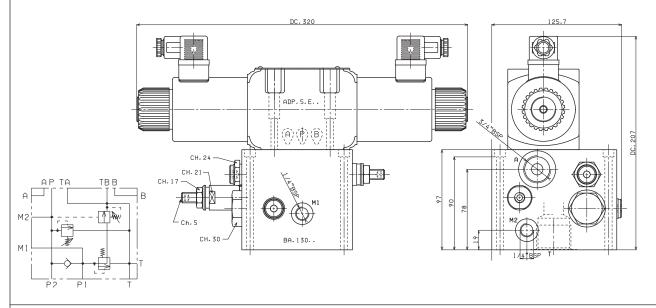

00

No variant

1

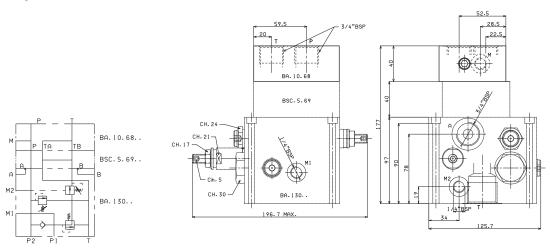

Serial No.

#### OVERALL DIMENSIONS AND HYDRAULIC SYMBOL



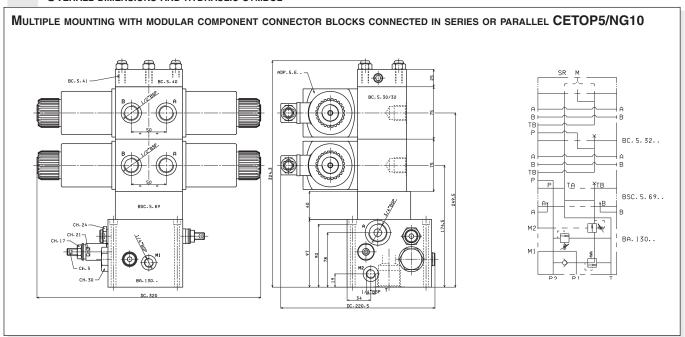

#### OVERALL DIMENSIONS AND HYDRAULIC SYMBOLS

## Side mounting for single solenoid valve CETOP5/NG10 (connector block BA.10.62) Fixing screws M10x80 UNI 5931



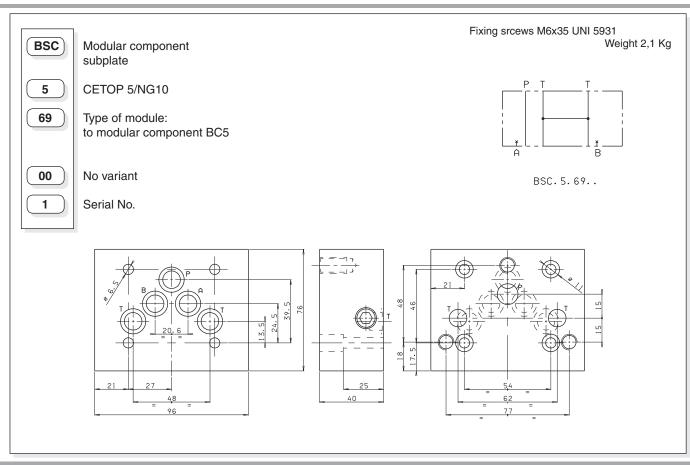

#### UPPER MOUNTING FOR SINGLE SOLENOID VALVE CETOP5/NG10

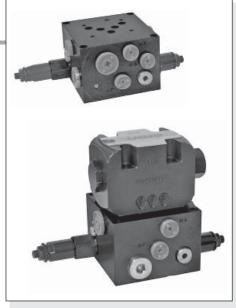



#### MOUNTING WITH THREADED CONNECTORS (CONNECTOR BLOCK BA.10.68)

Fixing screws M10x45 UNI 5931




10


#### OVERALL DIMENSIONS AND HYDRAULIC SYMBOL



# BSC.5.69... Transformation mounting CETOP 5 Interface to modular component BC.5...

এদ brevini





#### BS.5.RGA... / BS.5.RIA...

AD.5.I... Ch. I Page 43

#### BS.5.R\*A... Special subplate mountings with খ্যদ brevini **AUTOMATIC EXCLUSION REGENERATING CIRCUIT**

These special subplates, with relief valve, have integrated a regenerative circuit which disengages automatically with increasing load.

This circuit allows a fast movement of the cylinder with low working pressure followed by an automatic disengagement of the regenerative function at the set pressure, consequent a higher hydraulic force is available.

Furthermore in the BS.5.RIA version the automatic reciprocating valve allows a continuous movement of the cylinder till the stop of the pump.

The reciprocating valve has a preferential position which allows the cylinder to begin always in the same position at the start of the working cycle ( $P \rightarrow B$ ).

This systems are particularly useful for garbage compactors or small presses.

Max. pump flow (suggested) 30 l/min Max. flow with regenerative connected 100 l/min Max. operating pressure (relief valve) 350 bar Max. operating pressure (exclusion) 200 bar Hydraulic fluids Mineral oils DIN 51524 10 ÷ 500 mm<sup>2</sup>/s Fluid viscosity Fluid temperature -25°C ÷ 75°C Ambient temperature -25°C ÷ 60°C Max. contamination level class 10 in accordance with NAS 1638 with filter B₂₅≥75

Weight BS.5.RGA... version Kg 5,7 Weight BS.5.RIA... version Kg 9,4

#### TYPICAL INSTALLATION VALUES

- Cylinder area ratio (α) 1,6:1
- Pump flow (QP) 30 I/min
- Type of oil 46 cSt a 40°
- Regenerative flow (QR)

**80 I/min** (for RGA standard subplate) 75 I/min (for RIA standard subplate)

- Min. exclusion pressure setting 70 bar
- Max exclusion pressure setting 200 bar
- Exclusion pressure drops 6 bar

#### **ORDERING CODE**

BS

Single subplate mounting

5

CETOP 5/NG10

\*\*\*

**RGA** = Automatic exclusion regenerating circuit with presetting for AD.5.E...

RIA = Automatic exclusion regenerating circuit with AD.5.I.P.2T.1 included

U3

Exclusion range 20 ÷ 200 - see note (\*)

Adjustment (relief valve)

M = Plastic knob

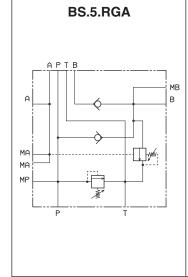
C = Grub screw

Max relief setting ranges

2 = max. 140 bar (yellow spring)

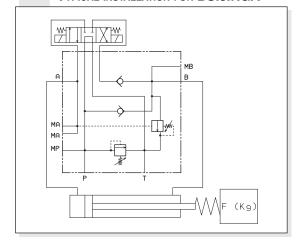
3 = max. 350 bar (green spring)

\*\*


00 = No variant

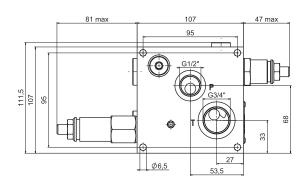
2

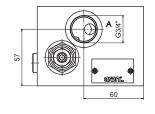
Serial No

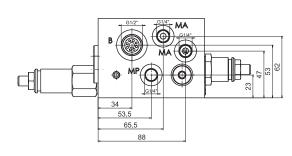

(\*) These values depend on the hydraulic circuit configuration: flow, dimensions and system's frictions.

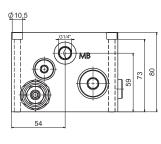
#### HYDRAULIC SYMBOLS



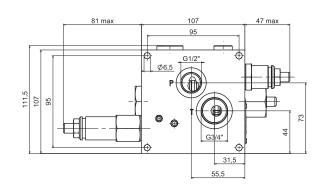

# BS.5.RIA... (WITH AD.5.I.P.2T.1) B Α MR МΩ

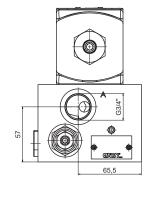

#### TYPICAL INSTALLATION FOR BS.5.RGA

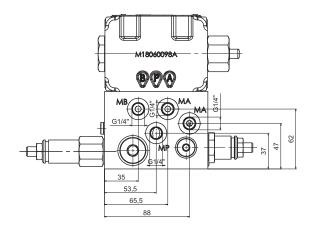


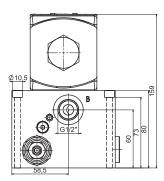


#### OVERALL DIMENSIONS

#### BS.5.RGA...




#### BS.5.RIA... WITH AD.5.I.P.2T.1









# 11

|            | <b>A</b> BBREVIATIONS       |
|------------|-----------------------------|
| AP         | HIGH PRESSURE CONNECTION    |
| AS         | Phase Lag (DEGREES)         |
| BP         | Low pressure connection     |
| С          | Stroke (MM)                 |
| CH         | ACROSS FLATS                |
| Сн         | INTERNAL ACROSS FLATS       |
| DA         | AMPLITUDE DECAY (DB)        |
| DP         | DIFFERENTIAL PRESSURE (BAR) |
| F          | Force (N)                   |
| <b>l</b> % | INPUT CURRENT (A)           |
| M          | Manometer connection        |
| NG         | Knob turns                  |
| OR         | SEAL RING                   |
| Р          | Load pressure (bar)         |
| PARBAK     |                             |
| PL         | Parallel connection         |
| PR         | REDUCED PRESSURE (BAR)      |
| Q          | FLOW (L/MIN)                |
| QР         | Pump flow (L/min)           |
| SE         | ELASTIC PIN                 |
| SF         | Ball                        |
| SR         | Series connection           |
| X          | PILOTING                    |
| Υ          | Drainage                    |

#### **COMPENSATED BANKABLE VALVES**

SEE CATALOGUE
CODE DOC00046



#### ABBREVIATIONS

|            | ABBREVIATIONS               |
|------------|-----------------------------|
| AP         | HIGH PRESSURE CONNECTION    |
| AS         | Phase Lag (DEGREES)         |
| BP         | Low pressure connection     |
| С          | STROKE (MM)                 |
| CH         | ACROSS FLATS                |
| Сн         | INTERNAL ACROSS FLATS       |
| DA         | AMPLITUDE DECAY (DB)        |
| Dρ         | DIFFERENTIAL PRESSURE (BAR) |
| F          | Force (N)                   |
| <b>l</b> % | INPUT CURRENT (A)           |
| M          | MANOMETER CONNECTION        |
| NG         | Knob turns                  |
| OR         | SEAL RING                   |
| Р          | Load pressure (bar)         |
| PARBAI     | K Parbak ring               |
| PL         | Parallel connection         |
| PR         | Reduced pressure (bar)      |
| Q          | FLOW (L/MIN)                |
| QΡ         | PUMP FLOW (L/MIN)           |
| SE         | ELASTIC PIN                 |
| SF         | Ball                        |
| SR         | Series connection           |
| X          | PILOTING                    |
| Υ          | Drainage                    |

# DC AND AC STANDARD COILS "UL RECOGNIZED" TYPE COILS

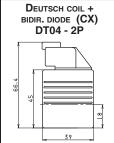


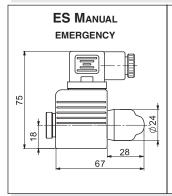
| A09 DC COIL                  |                 |
|------------------------------|-----------------|
|                              | Ch. XII PAGE 2  |
| 20W DC COIL (OFF-HIGHWAY MA  | CHINERY)        |
|                              | Ch. XII PAGE 3  |
| D15 DC Coil                  |                 |
|                              | Ch. XII PAGE 4  |
| PLASTIC TYPE D15 DC COIL (RS | S VARIANT)      |
|                              | Ch. XII PAGE 5  |
| 40W Coil                     |                 |
|                              | Ch. XII PAGE 6  |
| B14 AC SOLENOID              |                 |
|                              | Ch. XII PAGE 7  |
| A16 DC COIL                  |                 |
|                              | Ch. XII PAGE 8  |
| D19 DC SOLENOID              |                 |
|                              | Ch. XII PAGE 9  |
| K16 AC SOLENOID              |                 |
|                              | CH. XII PAGE 10 |
| 22W DC COIL (FOR CARTRIDGE   | VALVE)          |
|                              | CH. XII PAGE 11 |
| 30W DC COIL (FOR CARTRIDGE   | VALVES)         |
|                              | Ch. XII PAGE 12 |
| "UL RECOGNIZED" COILS        |                 |
|                              | Ch. XII PAGE 13 |

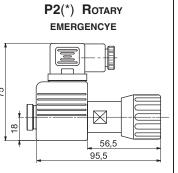


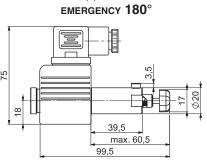
# A09 DC coils



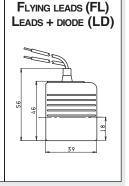

| Type of protection              |              |
|---------------------------------|--------------|
| (in relation to connector used) | IP 65        |
| Number of cycle                 | 18.000/h     |
| Supply tolerance                | ±10%         |
| Ambient temperature             | -30°C ÷ 50°C |
| Duty cycle                      | 100% ED      |
| Insulation class wire           | Н            |
| Weight                          | 0,215 Kg     |


| MOUNTING COMPATIBILITY |  |  |  |  |
|------------------------|--|--|--|--|
| Ch. I PAGE 4           |  |  |  |  |
| Ch. I PAGE 5           |  |  |  |  |
| Ch. I PAGE 62          |  |  |  |  |
| BFP CARTRIDGE CAT.     |  |  |  |  |
| Ch. V PAGE 2           |  |  |  |  |
|                        |  |  |  |  |


| Voltage<br>(V) | Max winding temperature (Ambient temperature 25°C) | RATED<br>POWER<br>(W) | RESISTANCE<br>AT 20°C<br>(OHM) ±7% |
|----------------|----------------------------------------------------|-----------------------|------------------------------------|
| 12V            | 123°C                                              | 27                    | 5.3                                |
| 24V            | 123°C                                              | 27                    | 21.3                               |
| 48V*           | 123°C                                              | 27                    | 85.3                               |
| 102V(*)(**)    | 123°C                                              | 27                    | 392                                |
| 110V(*)(**)    | 123°C                                              | 27                    | 448                                |
| 205V(*)(**)    | 123°C                                              | 27                    | 1577                               |
| * Special      | voltages                                           |                       |                                    |

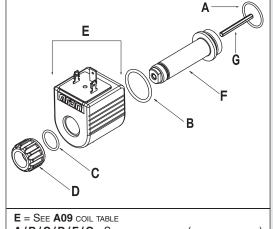

\*\* The european low voltage directive is applied to electronical equipments used at a nominal voltages between 50 and 1000 VAC or 75 and 1500 VDC. In conformity with the low directive each part of the manifold or the subplate on which the valve is mounted should be connected to a protective earth with a resistence less than 0.1 ohms.

| AMP JUNIOR<br>(AJ) |    |  |  |  |
|--------------------|----|--|--|--|
| 59                 | 39 |  |  |  |








R5(\*) ROTARY



#### SPARE PARTS

(\*) P2 and R5 Emergency tightening torque max. 6÷9 Nm / 0.6 ÷ 0.9 Kgm with CH n. 22

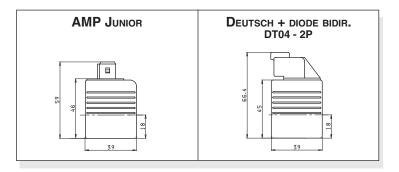


A/B/C/D/F/G = SINGLE SPARE PARTS (SEE CODES TABLE)

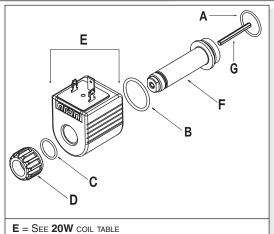
| A09 DC - 2                                                              | 27W Coll                                                                   | Connections            |                                       |                               |                                   |  |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------|---------------------------------------|-------------------------------|-----------------------------------|--|
| Voltage                                                                 | HIRSCHMANN<br>(STANDARD)<br>(00)                                           | Amp<br>Junior<br>(AJ)  | FLYING LEADS<br>+ DIODE (130)<br>(LD) | FLYING LEADS<br>(250)<br>(FL) | DEUTSCH +<br>BIDIR. DIODE<br>(CX) |  |
| 12 V (L)<br>24 V (M)<br>48V* (N)<br>102V* (Z)<br>110V* (P)<br>205V* (X) | M14310001<br>M14310002<br>M14310003<br>M14310008<br>M14310005<br>M14310009 | M14320001<br>M14320002 | M14330001<br>M14330002                | M14070011<br>M14070012        | M14340001<br>M14340002            |  |
| (*)Special vo                                                           | OLTAGES                                                                    |                        |                                       | FTANQ_CN                      | NF _ NN/2007/o                    |  |

| COMPLETE KIT             | AD2E             | CDL04 | ADC3      | CDC3      |  |
|--------------------------|------------------|-------|-----------|-----------|--|
| COMPLETE SOLENOID'S TUBE | V85990008        |       | V859      | V85990007 |  |
| P2 ROTARY EMERGENCY      | V89990016 V89990 |       | 90017     |           |  |
| R5 ROTARY EMERGENCY 180° | -                |       | V15050098 |           |  |
| ES MANUAL EMERGENCY      | M19050003        |       |           |           |  |

| CODE        | Α         | В         | С         | D         | Е          | F         | G                                   | Mounting                            |
|-------------|-----------|-----------|-----------|-----------|------------|-----------|-------------------------------------|-------------------------------------|
| SPARE PARTS |           | O RING    |           | RING NUT  | COIL       | TUBE      | HEX. PUSHROD                        | Available                           |
| AD2E        | Q25831023 | Q25830096 | Q25860013 | M37050036 | ш          | M83060003 | M74490001<br>M74490002<br>M74490003 | C - E - F<br>G - H - I - L<br>D - M |
| CDL04       |           |           |           |           | TABL<br>00 |           | M74490004                           | -                                   |
| ADC3 / CDC3 | Q25830024 | Q25860023 |           | M37050031 | SEE        | M83060004 | M74460001<br>M74460002              | C - E - F<br>G - H                  |
| C3V03       | Q25861025 | Q25860024 |           |           |            | M83060002 | M74480001                           | -                                   |




# "20W" DC COILS FOR OFF-HIGHWAY MACHINERY brevini


| Type of protection              |              |
|---------------------------------|--------------|
| (in relation to connector used) | IP 65        |
| Number of cycle                 | 18.000/h     |
| Supply tolerance                | ±10%         |
| Ambient temperature             | -30°C ÷ 60°C |
| Duty cycle                      | 100% ED      |
| Insulation class wire           | Н            |
| Weight                          | 0,212 Kg     |

| MOUNTING COMPATIBILITY |               |  |  |  |
|------------------------|---------------|--|--|--|
| CRD.03                 | Ch. V page 34 |  |  |  |
| C3V.05                 | Ch. V PAGE 42 |  |  |  |

| Voltage<br>(V) | Max. winding temperature (Ambient temperature 25°C) |    |                   |
|----------------|-----------------------------------------------------|----|-------------------|
| 12V            | -                                                   | 20 | 7.2               |
|                |                                                     |    | ET20W - 01/2004/e |



## **SPARE PARTS**



| 20W DC Coil | Connec               | CTIONS                     |
|-------------|----------------------|----------------------------|
| Voltage     | Amp<br>Junior<br>(A) | DEUTSCH + BIDIR. DIODE (D) |
| 12V (L)     | M14321001            | M14341001                  |
|             | ET20W-C0             | DE - 00/2007/e             |

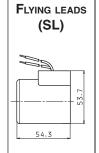
E = SEE 20W COIL TABLE A/B/C/D/F/G = SINGLE SPARE PARTS (SEE CODES TABLE)

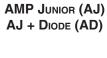
| CODE           | Α         | В         | С         | D                      | E          | F                      | G                      |
|----------------|-----------|-----------|-----------|------------------------|------------|------------------------|------------------------|
| SPARE PARTS    |           | O RING    |           | RING NUT               | COIL       | TUBE                   | HEX. PUSHROD           |
| CRD03<br>C3V05 | Q25861010 | Q25860023 | Q25830022 | M37050031<br>M37050036 | See<br>20W | M83060007<br>M83060006 | M74480003<br>M74480002 |

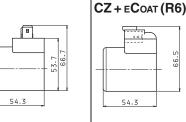


#### "D15" DC COILS FOR CETOP 3

#### খদ brevini

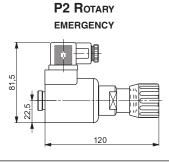

| IP 66        |
|--------------|
| 18.000/h     |
| ±10%         |
| -54°C ÷ 60°C |
| 100% ED      |
| Н            |
| 0,354 Kg     |
|              |

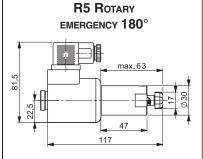

| MOUNTING COMPATIBILITY |                |  |  |  |
|------------------------|----------------|--|--|--|
| CETOP 3                | Ch. I PAGE 8   |  |  |  |
| AD3.E                  | Ch. I PAGE 11  |  |  |  |
| AD3.V                  | Ch. I PAGE 14  |  |  |  |
| ADL.06                 | Ch. I PAGE 65  |  |  |  |
| A.66                   | CH. IV PAGE 19 |  |  |  |
| CD.3                   | Ch. XI page 5  |  |  |  |


| VOLTAGE            | Max winding temperature    | RATED |            |  |  |  |
|--------------------|----------------------------|-------|------------|--|--|--|
| (V)                | (AMBIENT TEMPERATURE 25°C) | POWER | ат 20°С    |  |  |  |
| (V)                | (AMBIENT TEMPERATURE 25 C) | (W)   | (Онм) ±10% |  |  |  |
| 12V                | 110°C                      | 30    | 4.8        |  |  |  |
| 24V                | 110°C                      | 30    | 18.8       |  |  |  |
| 28V*               | 110°C                      | 30    | 25.6       |  |  |  |
| 48V*               | 110°C                      | 30    | 75.2       |  |  |  |
| 102V(*)(**)        | 110°C                      | 30    | 340        |  |  |  |
| 110V(*)(**)        | 110°C                      | 30    | 387        |  |  |  |
| 205V(*)(**)        | 110°C                      | 30    | 1375       |  |  |  |
| * Special voltages |                            |       |            |  |  |  |

\*\* The european low voltage directive is applied to electronical equipments used at a nominal voltages between 50 and 1000 VAC or 75 and 1500 VDC. In conformity with the low directive each part of the manifold or the subplate on which the valve is mounted should be connected to a protective earth with a resistence less than 0.1 ohms.

| ECOAT COIL (RS)        | ES MANUAL |
|------------------------|-----------|
| 33                     | EMERGENCY |
| SEE THE FOLLOWING PAGE | 98,5      |






**D**EUTSCH

DT04 - 2P (CZ)





#### **SPARE PARTS**



E = SEE D15 COIL TABLE

A/B/C/D/F/G = SINGLE SPARE PARTS (SEE CODES TABLE)

| D15 DC - 30W Coil                   |                                     | Connections            |                               |                               |                 |  |
|-------------------------------------|-------------------------------------|------------------------|-------------------------------|-------------------------------|-----------------|--|
| Voltage                             | HIRSCHMANN<br>(STANDARD)<br>(00)    | Amp<br>Junior<br>(AJ)  | AMP JUNIOR<br>+ DIODE<br>(AD) | FLYING LEADS<br>(175)<br>(SL) | Deutsch<br>(CZ) |  |
| 12V (L)<br>24V (M)                  | M14450002<br>M14450004              | M14460002<br>M14460004 | M14470002<br>M14470004        | M14480002<br>M14480004        | M14490002<br>-  |  |
| 28V* (V)<br>48V* (N)                | M14450005<br>M14450006              |                        |                               |                               |                 |  |
| 102V* (Z)<br>110V* (P)<br>205V* (X) | M14450018<br>M14450008<br>M14450019 |                        |                               |                               |                 |  |
| (*)Special voltages                 |                                     |                        |                               |                               |                 |  |

| COMPLETE<br>KIT             | AD3E        | CD3 | ADL06 | AD3V | A66 |
|-----------------------------|-------------|-----|-------|------|-----|
| COMPLETE<br>SOLENOID'S TUBE | V85990003   |     |       |      |     |
| P2 ROTARY<br>EMERGENCY      | V89990010 - |     |       |      |     |
| R5 ROTARY<br>EMERGENCY 180° | V15050097   |     |       |      |     |
| ES MANUAL<br>EMERGENCY      | M19050004   |     |       |      |     |

12

| CODE                         | Α         | В         | С         | D         | Е                       | F         | G                                   | Mounting                            |
|------------------------------|-----------|-----------|-----------|-----------|-------------------------|-----------|-------------------------------------|-------------------------------------|
| SPARE PARTS                  |           | O RING    |           | RING NUT  | COIL                    | TUBE      | HEX. PUSHROD                        | Available                           |
| AD3E<br>CD3<br>AD3V<br>ADL06 | Q25830024 | Q25860033 | Q25830185 | M37050030 | SEE TABLE<br><b>D15</b> | M83130001 | M74470001<br>M74470002<br>M74470003 | C - E - F - M<br>G - H - I - L<br>D |
| A66                          |           |           |           |           |                         |           | M74470004                           | -                                   |

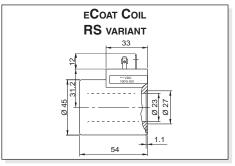




## HIRSCHMANN ECOAT(1) COILS (D15 RS VARIANT) # brevini

| Type of protection (in relation to | the connector) IP 66 |
|------------------------------------|----------------------|
| Number of cycles                   | 18.000/h             |
| Supply tolerance                   | ±10%                 |
| Ambient temperature                | -54°C ÷ 60°C         |
| Duty cycle                         | 100% ED              |
| Insulation class wire              | Н                    |
| Weight                             | 0,354 Kg             |

| MOUNTING COMPATIBILITY |               |  |  |  |  |
|------------------------|---------------|--|--|--|--|
| CETOP 3                | Ch. I PAGE 8  |  |  |  |  |
| AD3.E                  | Ch. I PAGE 11 |  |  |  |  |
| ADL.06                 | Ch. I page 65 |  |  |  |  |


| VOLTAGE            | Max. winding temperature   | RATED     | RESISTANCE AT 20°C |
|--------------------|----------------------------|-----------|--------------------|
| (V)                | (AMBIENT TEMPERATURE 25°C) | POWER (W) | (Онм) ±10%         |
| 12V                | 110°C                      | 30        | 4.8                |
| 24V                | 110°C                      | 30        | 18.8               |
| 28V*               | 110°C                      | 30        | 25.6               |
| 110V(*)(**)        | 110°C                      | 30        | 387                |
| * Special voltages |                            |           |                    |

- (1)Sealed coil winding with steel out housing with eCoat protection. Has succesfully overcome more than 700 hours of salt spray test before red rust (test according to UNI EN ISO 9227 and test evaluation according to UNI EN ISO 10289).
- \*\* The european low voltage directive is applied to electronical equipments used at a nominal voltages between 50 and 1000 VAC or 75 and 1500 VDC. In conformity with the low directive each part of the manifold or the subplate on which the valve is mounted should be connected to a protective earth with a resistence less than 0.1 ohms.

#### **SPARE PARTS**

| D15 ECOAT COIL (DC / 30W) |                          |  |
|---------------------------|--------------------------|--|
| VOLTAGE                   | Hirschmann<br>(Standard) |  |
| 12V (L)                   | M14820001                |  |
| 24V (M)                   | M14820002                |  |
| 28V* (V)                  | M14820005                |  |
| 110V* (P)                 | M14820008                |  |
| (*)SPECIAL VOLTAGES       | •                        |  |

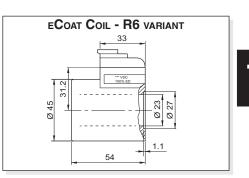
| CODE SPARE PARTS B/C/D/E/F/G |                                                                | FOR <b>RS</b> VARIANT               |
|------------------------------|----------------------------------------------------------------|-------------------------------------|
| В                            | OR (TUBE)                                                      | Q25830024                           |
| С                            | RING NUT                                                       | M37050062                           |
| D                            | O RING (RING NUT)                                              | Q25830185                           |
| Е                            | O RING (COIL)                                                  | Q25860033                           |
| F                            | Tube                                                           | M83130001                           |
| G                            | HEX. PUSHROD  (MOUNTING C-E-F)  (MOUNTING G-H-I)  (MOUNTING D) | M74470001<br>M74470002<br>M74470003 |



SEE "D15" COIL STANDARD FOR BOTH EMERGENCY MANUAL ES AND ROTARY P2.



# DEUTSCH ECOAT(1) COILS (D15 R6 VARIANT) # brevini


| MOUNTING COMPATIBILITY |               |  |
|------------------------|---------------|--|
| CETOP 3 Ch. I PAGE 8   |               |  |
| AD3.E                  | CH. I PAGE 11 |  |
| ADL.06                 | Ch. I page 65 |  |
|                        |               |  |

| VOLTAGE | Max. WINDING TEMPERATURE   | RATED     | RESISTANCE AT 20°C |
|---------|----------------------------|-----------|--------------------|
| (V)     | (AMBIENT TEMPERATURE 25°C) | POWER (W) | (Онм) ±10%         |
| 12V     | 110°C                      | 30        | 4.8                |
| 24V     | 110°C                      | 30        | 18.8               |

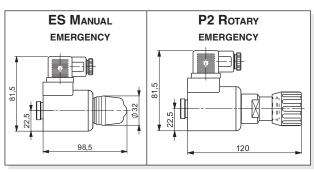
(1) Sealed coil winding with steel out housing with eCoat protection. Has succesfully overcome more than 700 hours of salt spray test before red rust (test according to UNI EN ISO 9227 and test evaluation according to UNI EN ISO 10289).

| D15 ECOAT COIL (DC / 30W) |           |  |
|---------------------------|-----------|--|
| TENSIONE                  | DEUTSCH   |  |
| 12V (L)                   | M14830001 |  |
| 24V (M)                   | M14830002 |  |

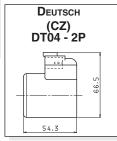
| CODE SPARE PARTS B/C/D/E/F/G |                                                                | for <b>R6</b> variant               |
|------------------------------|----------------------------------------------------------------|-------------------------------------|
| В                            | OR (TUBE)                                                      | Q25830024                           |
| С                            | RING NUT                                                       | M37050062                           |
| D                            | O RING (RING NUT)                                              | Q25830185                           |
| Е                            | O RING (COIL)                                                  | Q25860033                           |
| F                            | Тиве                                                           | M83130001                           |
| G                            | HEX. PUSHROD  (MOUNTING C-E-F)  (MOUNTING G-H-I)  (MOUNTING D) | M74470001<br>M74470002<br>M74470003 |



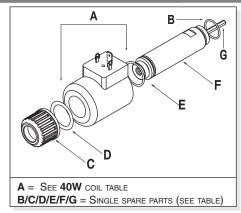
SEE "D15" COIL STANDARD FOR BOTH EMERGENCY MANUAL ES AND ROTARY P2.




# "40W" DC coil (FOR CDL.06...)




| Type of protection (in relation to | the connector) IP 66 |
|------------------------------------|----------------------|
| Number of cycles                   | 18.000/h             |
| Supply tolerance                   | ±10%                 |
| Ambient temperature                | -54°C ÷ 60°C         |
| Duty cycle                         | 100% ED              |
| Insulation class wire              | Н                    |
| Weight                             | 0.354 Ka             |


| ГΥ            |
|---------------|
| Ch. I PAGE 64 |
|               |



| Voltage<br>(V) | Max. winding temperature (Ambient temperature 25°C) | RATED POWER (W) | RESISTANCE AT 20°C (OHM) ±10% |
|----------------|-----------------------------------------------------|-----------------|-------------------------------|
| 12V            | 135°C                                               | 40              | 3.6                           |
| 24V            | 135°C                                               | 40              | 14.4                          |



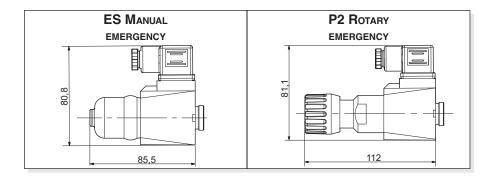
| COMPLETE<br>KIT        | CDL06     |
|------------------------|-----------|
| P2 ROTARY<br>EMERGENCY | V89990010 |
| ES MANUAL<br>EMERGENCY | M19050004 |



| 40W DC Coil | CONNECTIONS              |  |
|-------------|--------------------------|--|
| VOLTAGE     | Hirschmann<br>(Standard) |  |
| 12V (L)     | M14600001                |  |
| 24V (M)     | M14600002                |  |
|             | Deutsch<br>(CZ)          |  |
| 12V (L)     | M14610001                |  |
| 24V (M)     | M14610002                |  |

| CODE SPARE PARTS B/C/D/E/F/G |                   | FOR CDL06 |  |  |
|------------------------------|-------------------|-----------|--|--|
| В                            | O RING (TUBE)     | Q25830024 |  |  |
| С                            | RING NUT          | M37050030 |  |  |
| D                            | O RING (RING NUT) | Q25830185 |  |  |
| Е                            | O RING (COIL)     | Q25860033 |  |  |
| F                            | Тиве              | M83130001 |  |  |
| G                            | HEX. PUSHROD      | M74470003 |  |  |
| ET40W-CODE - 00/2007/e       |                   |           |  |  |



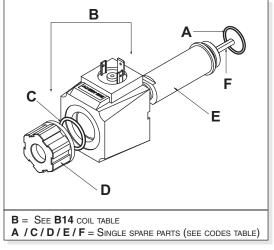



# "B14" AC SOLENOIDS FOR CETOP 3

| Type of protection                  |              |
|-------------------------------------|--------------|
| (in relation to the connector used) | IP 65        |
| Number of cycles                    | 18.000/h     |
| Supply tolerance                    | +10% / -10%  |
| Ambient temperature                 | -30°C ÷ 60°C |
| Duty cycle                          | 100% ED      |
| Insulation class wire               | H            |
| Weight                              | 0,436 Kg     |

| MOUNTING COMPATIBILITY |  |  |  |
|------------------------|--|--|--|
| Ch. I PAGE 8           |  |  |  |
| Ch. I page 11          |  |  |  |
|                        |  |  |  |

(\*) serial No. 3 (AC voltage)




| Voltage                 | Max. WINDING TEMPERATURE   | RESISTANCE AT 20°C | RATED POWER | PICKUP CURRENT |
|-------------------------|----------------------------|--------------------|-------------|----------------|
| (V)                     | (Ambient temperature 25°C) | (Онм) ±10%         | (VA)        | (A)            |
| 24V/50Hz - 24V/60Hz     | 100°C - 96°C               | 1.7                | 54 - 40     | 5.6 - 5        |
| 48V/50Hz - 48V/60Hz     | 112°C - 98°C               | 6.8                | 45 - 34     | 5.3 - 5        |
| 115V/50Hz - 120V/60Hz * | 133°C - 101°C              | 32.5               | 61 - 51     | 3.2 - 3.2      |
| 230V/50Hz - 240V/60Hz * | 120°C - 103°C              | 134                | 62 - 52     | 1.6 - 1.6      |

<sup>\*</sup> The european low voltage directive is applied to electronical equip- the manifold or the subplate on which the valve is mounted should be ments used at a nominal voltages between 50 and 1000 VAC or 75 and 1500 VDC. In conformity with the low directive each part of

connected to a protective earth with a resistence less than 0.1 ohms.

## **SPARE PARTS**



| B14 AC COIL                        | Connection               |
|------------------------------------|--------------------------|
| Voltage                            | Hirschmann<br>(Standard) |
| 24V/50-60Hz (A)<br>48V/50-60Hz (B) | M14640003<br>M14640007   |
| 115V/50Hz (J)<br>120V/60Hz         | M14640006                |
| 230V/50Hz (Y)<br>240V/60Hz         | M14640001                |
|                                    | Cons                     |

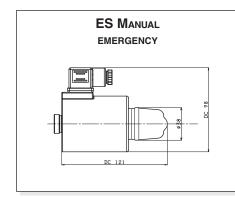
| COMPLETE KIT        | Code      |  |
|---------------------|-----------|--|
| Тиве Кіт            | V85990011 |  |
| ROTARY EMERGENCY P2 | V89990021 |  |
| Manual Emergency ES | M19050001 |  |

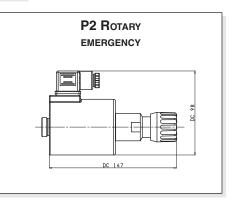
| CODE        | Α         | В          | С         | D         | E          | F                                   | Mounting                            |
|-------------|-----------|------------|-----------|-----------|------------|-------------------------------------|-------------------------------------|
| SPARE PARTS | O Ring    | Coil       | O Ring    | RING NUT  | TUBE       | HEX. PUSHROD                        | Available                           |
| AD3E*       | Q25830024 | SEE<br>B14 | Q25860036 | M37050041 | M831100001 | M74520001<br>M74520002<br>M74520003 | C - E - F - M<br>G - H - I - L<br>D |

(\*) serial No. 3 (AC voltage)

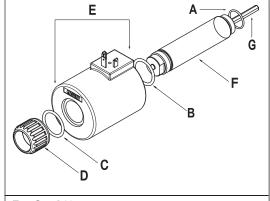


#### "A16" DC COILS FOR CETOP 5


#### খদ brevini


| Type of protection                  |              |
|-------------------------------------|--------------|
| (in relation to the connector used) | IP 65        |
| Number of cycles                    | 18.000/h     |
| Supply tolerance                    | ±10%         |
| Ambient temperature                 | -30°C ÷ 60°C |
| Duty cycle                          | 100% ED      |
| Insulation class wire               | Н            |
| Weight                              | 0,9 Kg       |

| MOUNTING COMPATIBILITY |                |  |  |  |
|------------------------|----------------|--|--|--|
| CETOP 5                | Ch. I page 29  |  |  |  |
| AD5.E                  | Ch. I page 32  |  |  |  |
| CDL.10                 | Ch. I page 66  |  |  |  |
| ADL.10.6               | Ch. I page 67  |  |  |  |
| A.88                   | CH. IV PAGE 33 |  |  |  |


| Voltage<br>(V)          | Max winding temperature<br>(Ambient temperature 25°C) | RATED POWER<br>(W) | RESISTANCE AT 20°C<br>(OHM) ±7% |
|-------------------------|-------------------------------------------------------|--------------------|---------------------------------|
| 12V                     | 106°C                                                 | 45                 | 3.2                             |
| 24V                     | 113°C                                                 | 45                 | 12.4                            |
| 48V*                    | -                                                     | 45                 | -                               |
| 102V(*)(**)             | -                                                     | 45                 | -                               |
| 110V <sup>(*)(**)</sup> | 118°C                                                 | 45                 | 268                             |
| 205V(*)(**)             | -                                                     | 45                 | -                               |
| * Special voltage       | ges                                                   |                    |                                 |

\*\* The european low voltage directive is applied to electronical equipments used at a nominal voltages between 50 and 1000 VAC or 75 and 1500 VDC. In conformity with the low directive each part of the manifold or the subplate on which the valve is mounted should be connected to a protective earth with a resistence less than 0.1 ohms.





#### **SPARE PARTS**



E = SEE A16 COIL TABLE A/B/C/D/F/G = SINGLE SPARE PARTS (SEE CODES TABLE)

| A16 DC/45W Coil     | Connection               |  |  |
|---------------------|--------------------------|--|--|
| VOLTAGE             | Hirschmann<br>(Standard) |  |  |
| 12V (L)             | M14220002                |  |  |
| 24V (M)             | M14220004                |  |  |
| 48V* (N)            | M14220006                |  |  |
| 102V* (Z)           | M14220013                |  |  |
| 110V* (P)           | M14220008                |  |  |
| 205V* (X)           | M14220014                |  |  |
| (*)Special voltages |                          |  |  |
|                     | ETA16-CODE - 00/2007/e   |  |  |

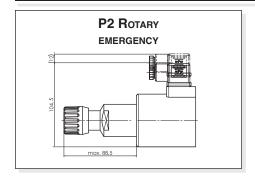
| COMPLETE KIT        | AD5E      | CDL10 | ADL10 | A88 |
|---------------------|-----------|-------|-------|-----|
| P2 ROTARY EMERGENCY | V89990011 |       |       | -   |
| ES MANUAL EMERGENCY | M19050002 |       |       |     |

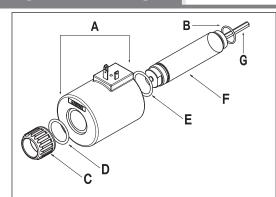
12

| CODE              | Α         | В         | С         | D         | E          | F         | G                                   | Mounting                            |
|-------------------|-----------|-----------|-----------|-----------|------------|-----------|-------------------------------------|-------------------------------------|
| SPARE PARTS       |           | O RING    |           | RING NUT  | COIL       | TUBE      | HEX. PUSHROD                        | Available                           |
| AD5E<br>ADL/CDL10 | Q25830026 | Q25860040 | Q25860040 | M37050033 | See<br>A16 | M83160001 | M74440002<br>M74440003<br>M74440004 | C - E - F - M<br>G - H - I - L<br>D |
| A88               |           |           |           |           |            |           | M74440006                           | -                                   |

এদ brevini







| Type of protection                  |              |
|-------------------------------------|--------------|
| (in relation to the connector used) | IP 66        |
| Number of cycle                     | 18.000/h     |
| Supply tolerance                    | ±10%         |
| Ambient temperature                 | -54°C ÷ 60°C |
| Duty cycle                          | 100% ED      |
| Max static pressure                 | 210 bar      |
| Insulation class wire               | H            |
| Weight                              | 1,63 Kg      |

| MOUNTING COMPATIBILITY |               |  |  |
|------------------------|---------------|--|--|
| ADP.5.E Ch. I PAGE 37  |               |  |  |
| ADP.5.V                | Ch. I PAGE 40 |  |  |
| ADP.J.V                | On. I PAGE 40 |  |  |

| VOLTAGE<br>(V)    | Max winding temperature (Ambient temperature25°C) | RATED<br>POWER<br>(W) | RESISTANCE AT 20°C (OHM) ±10% |  |  |  |
|-------------------|---------------------------------------------------|-----------------------|-------------------------------|--|--|--|
| 12V               | 105°C                                             | 42                    | 3.43                          |  |  |  |
| 24V               | 105°C                                             | 42                    | 13.71                         |  |  |  |
| 48V*              | 105°C                                             | 42                    | 55                            |  |  |  |
| 102V(*)(**)       | 105°C                                             | 42                    | 248                           |  |  |  |
| 110V(*)(**)       | 105°C                                             | 42                    | 288                           |  |  |  |
| 205V(*)(**)       | 105°C                                             | 42                    | 1000                          |  |  |  |
| * Special voltage |                                                   |                       |                               |  |  |  |

The european low voltage directive is applied to electronical equipments used at a nominal voltages between 50 and 1000 VAC or 75 and 1500 VDC. In conformity with the low directive each part of the manifold or the subplate on which the valve is mounted should be connected to a protective earth with a resist-ence less than 0.1 ohms.



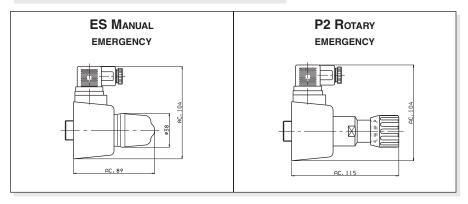


A = SEE D19 COIL TABLE B/C/D/E/F/G = SINGLE SPARE PARTS (SEE CODES TABLE)

| COMPLETE               | ADP5E | ADP5V |
|------------------------|-------|-------|
| P2 ROTARY<br>EMERGENCY | V8999 | 90012 |

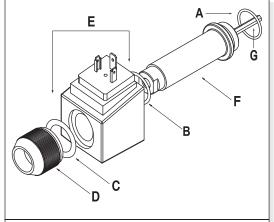
| D19 DC/42W Coil     | Connection               |
|---------------------|--------------------------|
| VOLTAGE             | Hirschmann<br>(Standard) |
| 12V (L)             | M14270001                |
| 24V (M)             | M14270002                |
| 48V* (N)            | M14270003                |
| 102V* (Z)           | M14270007                |
| 110V* (P)           | M14270005                |
| 205V* (X)           | M14270008                |
| (*)Special voltages | ETD19-CODE - 00/2007/e   |

|   | DE SPARE PARTS    | FOR ADP5E<br>AND ADP5V |
|---|-------------------|------------------------|
| В | O RING (TUBE)     | Q25830101              |
| С | RING NUT          | M37050022              |
| D | O RING (RING NUT) | Q25830035              |
| Е | O RING (COIL)     | Q25860035              |
| F | Тиве              | M83170002              |
| G | HEX. PUSHROD      | M74380002              |









| Type of protection                  |              |
|-------------------------------------|--------------|
| (in relation to the connector used) | IP 66        |
| Number of cycles                    | 18.000/h     |
| Supply tolerance                    | +10% / -10%  |
| Ambient temperature                 | -54°C ÷ 60°C |
| Duty cycle                          | 100% ED      |
| Max. pressure static                | 210 bar      |
| Insulation class wire               | Н            |
| Weight                              | 0,8 Kg       |

| MOUNTING COMPATIBILITY |               |  |  |
|------------------------|---------------|--|--|
| CETOP 5 Ch. I PAGE 29  |               |  |  |
| AD5.E                  | Ch. I page 32 |  |  |



| Voltage                                | Max. WINDING TEMPERATURE  | RATED     | IN RUSH CURRENT | RESISTANCE AT 20°C |  |  |
|----------------------------------------|---------------------------|-----------|-----------------|--------------------|--|--|
| (V)                                    | (Ambient temperature25°C) | POWER(VA) | (VA)            | (Онм) ±10%         |  |  |
| 24V/50Hz                               | 134°C                     | 124       | 454             | 0.56               |  |  |
| 24V/60Hz*                              | 115°C                     | 103.5     | 440             | 0.55               |  |  |
| 48V/50Hz*                              | 134°C                     | 113       | 453             | 2.10               |  |  |
| 115V/50Hz-120V/60Hz <sup>(*)(**)</sup> | 121°C - 138°C             | -         | -               | 10.8               |  |  |
| 230V/50Hz-240V/60Hz(*)(**)             | 121°C - 138°C             | -         | -               | 43.0               |  |  |
| 240V/50Hz(*)(**)                       | 134°C                     | 120       | 456             | 47.39              |  |  |
| * Special voltage                      |                           |           |                 |                    |  |  |

\*\* The european low voltage directive is applied to electronical equipments used at a nominal voltages between 50 and 1000 VAC or 75 and 1500 VDC. In conformity with the low directive each part of the manifold or the subplate on which the valve is mounted should be connected to a protective earth with a resistence less than 0.1 ohms.



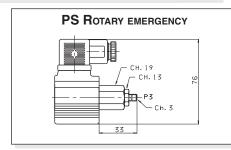
| Е | =   | SEE | K16         | COIL | TABLE   |         |       |        |        |       |
|---|-----|-----|-------------|------|---------|---------|-------|--------|--------|-------|
| A | / E | 3/C | <b>/D</b> / | F/G  | = SINGL | E SPARE | PARTS | (SEE C | ODES T | ABLE) |

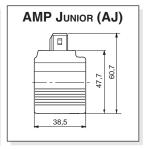
| K16 AC Coil                                    | CONNECTION                          |
|------------------------------------------------|-------------------------------------|
| Voltage                                        | Hirschmann<br>(Standard)            |
| 24V/50Hz (A)<br>24V/60Hz* (F)<br>48V/50Hz* (B) | M14300010<br>M14300012<br>M14300014 |
| 115V/50Hz (J)<br>120V/60Hz                     | M14300029                           |
| 230V/50Hz (Y)<br>240V/60Hz                     | M14300027                           |
| 240V/50Hz* (E)                                 | M14300025                           |
| (*)Special voltages                            | ETK16-CODE - 00/2007/e              |

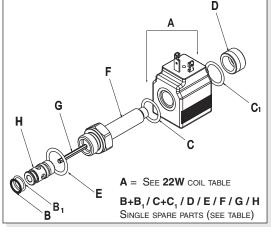
| COMPLETE<br>KIT        | AD5E      |
|------------------------|-----------|
| P2 ROTARY<br>EMERGENCY | V89990002 |
| ES MANUAL<br>EMERGENCY | M19050002 |

| CODE        | Α         | В         | С         | D         | Е          | F         | G                                   | Mounting              |
|-------------|-----------|-----------|-----------|-----------|------------|-----------|-------------------------------------|-----------------------|
| SPARE PARTS |           | O Ring    |           | RING NUT  | COIL       | TUBE      | HEX. PUSHROD                        | Available             |
| AD5E        | Q25830026 | Q25860026 | Q25830187 | M37050005 | SEE<br>K16 | M83300000 | M74210000<br>M74160000<br>M74700000 | C-E-F<br>G-H-I-L<br>D |

#### "22W" DC coils





| Type of protection (in relation to t | the connector) | IP 65  |
|--------------------------------------|----------------|--------|
| Number of cycles                     | 18             | .000/h |
| Supply tolerance                     | +10% /         | -10%   |
| Ambient temperature                  | -30°C ÷        | - 60°C |
| Duty cycle                           | 100            | )% ED  |
| Insulation class wire                |                | Н      |
| Weight                               | (              | 1 2 Ka |


| MOUNTING COMPATIBILITY |                    |  |  |  |
|------------------------|--------------------|--|--|--|
| CRP/CRD                | BFP CARTRIDGE CAT. |  |  |  |
| C2V.02                 | BFP CARTRIDGE CAT. |  |  |  |
|                        |                    |  |  |  |

| Voltage<br>(V)    | Max. winding temperature (Ambient temperature 25°C) | RATED POWER<br>(W) | RESISTANCE AT 20°C<br>(OHM) ±10% |
|-------------------|-----------------------------------------------------|--------------------|----------------------------------|
| 12V               | 116 °C                                              | 22                 | 6.3                              |
| 24V               | 115 °C                                              | 22                 | 25.6                             |
| 48V*              | 114 °C                                              | 22                 | 102                              |
| 102V(*)(**)       | -                                                   | 22                 | 467.85                           |
| 205V(*)(**)       | -                                                   | 22                 | 1954                             |
| * SPECIAL VOLTAGE |                                                     |                    |                                  |

\*\* The european low voltage directive is applied to electronical equipments used at a nominal voltages between 50 and 1000 VAC or 75 and 1500 VDC. In conformity with the low directive each part of the manifold or the subplate on which the valve is mounted should be connected to a protective earth with a resistence less than 0.1 ohms.







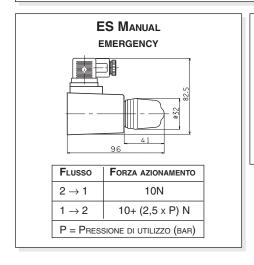
| 22W DC Coil                                              | Connections                                                   |                                       |  |  |  |  |
|----------------------------------------------------------|---------------------------------------------------------------|---------------------------------------|--|--|--|--|
| VOLTAGE                                                  | Standard                                                      | AMP JUNIOR (AJ)                       |  |  |  |  |
| 12V (L)<br>24V (M)<br>48V* (N)<br>102V* (Z)<br>205V* (X) | M14040001<br>M14040002<br>M14040003<br>M14040006<br>M14040007 | M14730001<br>M14730002<br>—<br>—<br>— |  |  |  |  |
| (*) SPECIAL VOLTAGES                                     | ET20W-CODE - 01/2008/e                                        |                                       |  |  |  |  |

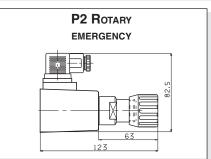
| COMPLETE<br>KIT        | CRP02NA   | CRD01/02  | CRP02NC | C2V02 | C3V02 |
|------------------------|-----------|-----------|---------|-------|-------|
| PS ROTARY<br>EMERGENCY | V89990014 | V89990005 |         | -     |       |

| Code<br>Spare parts<br>CRP/CRD | <b>B</b><br>Parbak<br>Valve se | <b>B</b> <sub>1</sub><br>O Ring | C + C <sub>1</sub> O RING (R. NUT/COIL) | <b>D</b><br>RING NUT | E+F<br>TUBE<br>(+ O RING TUBE) | <b>G</b><br>HEX. PUSHROD | H<br>Valve<br>Seat |
|--------------------------------|--------------------------------|---------------------------------|-----------------------------------------|----------------------|--------------------------------|--------------------------|--------------------|
| CRP02NCE                       | Q25780026                      | Q25830015                       | Q25860055                               | M37050026            | R83100B83                      | M86150006                | M70150003          |
| CRP02NCS                       |                                |                                 |                                         |                      | R83100B82                      | M86150004                |                    |
| CRP02NAE                       |                                |                                 |                                         |                      | R83100B84                      | M86150004                |                    |
| CRD01A                         | Q25780026                      | Q25830015                       |                                         |                      | R83100B85                      | M74440000                | M70150004          |
| CRD01B                         | Q25780030                      | Q25830021                       |                                         |                      |                                |                          | M70150005          |
| CRD02A                         | Q25780026                      | Q25830015                       |                                         |                      |                                | M74440001                | M70150004          |
| CRD02B                         | Q25780030                      | Q25830021                       |                                         |                      |                                |                          | M70150005          |

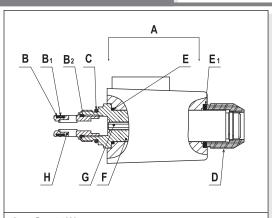
| Code<br>Spare parts<br>C2V/C3V02 | Parbak    | B <sub>1</sub><br>O RING | C + C <sub>1</sub> O RING (R. NUT/COIL) | <b>D</b><br>RING NUT | E<br>O Ring<br>(tube) | <b>F</b><br>TUBE | <b>G</b><br>HEX. PUSHROD | H<br>Valve<br>Seat |
|----------------------------------|-----------|--------------------------|-----------------------------------------|----------------------|-----------------------|------------------|--------------------------|--------------------|
| C2V02NC<br>C2V02NA               | Q25780026 | Q25830015                | Q <b>25860055</b>                       | M37050026            | Q25861010             | M83040005        | M50070002<br>M50070003   | M70400002          |
| C3V02                            | _         | Q25880036<br>Q25880045   |                                         |                      |                       |                  | M50070001                | M7040001           |




#### "30W" DC coils


#### খ্যদ brevini

Type of protection (in relation to the connector used) IP 65 Number of cycles 18.000/h Supply tolerance +10% / -10% Ambient temperature -54°C  $\div$  60°C Duty cycle 100% ED Insulation class wire H Weight 0,2 Kg


| MOUNTING CO | MPATIBILITY        |
|-------------|--------------------|
| CRD.04      | BFP CARTRIDGE CAT. |

| Voltage<br>(V) | Max. winding temperature (Ambient temperature 25°C) | RATED POWER<br>(W) | RESISTANCE AT 20°C (OHM) ±10% |
|----------------|-----------------------------------------------------|--------------------|-------------------------------|
| 12V            | 108°C                                               | 30                 | 4.7                           |
| 24V            | 108°C                                               | 30                 | 18.8                          |
|                |                                                     |                    | IT30W - 02/1999/i             |





# SPARE PARTS



| A = SEE 30W COIL TABLE        |                  |
|-------------------------------|------------------|
| $B+B_1+B_2/C/D/E+E_1/F/G/H =$ | SINGLE SPARE     |
|                               | PARTS (SEE TABLE |

| 30W                       | DC COIL |                    |  |
|---------------------------|---------|--------------------|--|
| 12V<br>M14100010<br>( L ) |         | 24V                |  |
|                           |         | M14100011<br>( M ) |  |
| ET20W-CODE - 00/2007/e    |         |                    |  |

| COMPLETE KIT        | CDL04     |
|---------------------|-----------|
| P2 ROTARY EMERGENCY | V89990007 |
| ES MANUAL EMERGENCY | M19050001 |

12.

|         | В         | B <sub>1</sub> | B <sub>2</sub> | С         | D         | E         | E,         | F         | G            | Н         |
|---------|-----------|----------------|----------------|-----------|-----------|-----------|------------|-----------|--------------|-----------|
|         | Parbak    | O RING         | O RING         | O RING    | RING NUT  | O RING    | O RING     | TUBE      | HEX. PUSHROD | VALVE     |
| 4       |           | VALVE SEAT     |                | (тиво)    |           | (COIL)    | (RING NUT) |           |              | SEAT      |
| Vers.   | Q25780026 | Q25830015      | Q25831017      | Q25861010 | M37050004 | Q25830026 | Q25830183  | R83200997 | M74360000    | M70150004 |
| Vers. B | Q25780030 | Q25830021      |                |           |           |           |            |           |              | M70150005 |







#### **UL RECOGNIZED COMPONENT MARK COILS**

"27W" DC COILS

**I**DENTIFICATION MARK

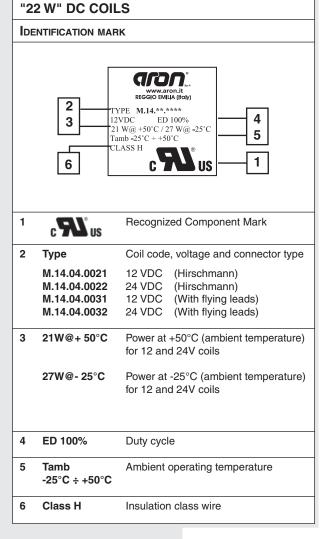


UL RECOGNIZED
COMPONENT MARK



The UL Recognized Component Mark may be used on component parts that are part of a larger product or system. The UL Mark is the most widely recognised and accepted evidence of product's compliance with Canadian and USA safety requirements.

#### UL CATEGORY CODE (CCN)


- U.S.A. - Canada

YSY12 YSY18 UL category code number (CCN) is assigned in order to identify wich product categories are covered by UL's Certification. Our category covers valve parts, such as solenoid operators, coil assemblies, coil enclosures, valve assemblies and similar items intended to be used as parts of electrically operated valves as indicated in the individual Recognitions.

# Aron UL FILE NUMBER MH45162

Visiting the UL web site (www.ul.com), linking *certifications* and writing the correct Aron UL File Number you can find our Certification.

The UL File Number is an alphanumeric designation assigned to any Company upon successful completion of a product evaluation or company certification.



|   | 3 12<br>22<br>Ta             | Www.aron.it receive Milk (pidy) YPE M.14.** **** PVDC ED 100% W@ +50°C / 32W @ -25°C amb -25°C ++50°C LASS H C  1 |  |  |
|---|------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|
| 1 | c <b>'RN</b> ° us            | Recognized Component Mark                                                                                         |  |  |
| 2 | Туре                         | Coil code, voltage and connector type                                                                             |  |  |
|   | M.14.31.0011                 | 12 VDC (Hirschmann)                                                                                               |  |  |
|   | M.14.31.0012<br>M.14.07.0021 | 24 VDC (Hirschmann)<br>12 VDC (With flying leads)                                                                 |  |  |
|   | M.14.07.0022                 | 24 VDC (With flying leads)                                                                                        |  |  |
| 3 | 22W@+ 50°C                   | Power at +50°C (ambient temperature) for 12V coils                                                                |  |  |
|   | 27W@+ 50°C                   | Power at +50°C (ambient temperature) for 24V coils                                                                |  |  |
|   | 32W@- 25°C                   | Power at -25°C (ambient temperature) for 12 and 24V coils                                                         |  |  |
| 4 | ED 100%                      | Duty cycle                                                                                                        |  |  |
| 5 | Tamb<br>-25°C ÷ +50°C        | Ambient operating temperature                                                                                     |  |  |
| 6 | Class H                      | Insulation class wire                                                                                             |  |  |

The Underwriters Laboratories Inc. o product safety symbol.

Laboratories Inc. 
is the accredited Unit to release the UL Mark, the most valued to symbol.



#### "22W" DC coils - UL RECOGNIZED



Type of protection (in relation to connector used) IP 65 Number of cycle 18.000/h Supply tolerance -15% / +10% -25°C ÷ 50°C Ambient temperature Power at +50°C (ambient temperature) for 12 and 24V coils 21W Power at -25°C (ambient temperature) for 12 and 24V coils 27W 100% ED Duty cycle Insulation class wire Н Weight 0,215 Kg

| VOLTAGE<br>(V) | Max winding temperature<br>(Ambient temperature 25°C) | RATED POWER (W) | RESISTANCE AT 20°C (OHM) ±10% |
|----------------|-------------------------------------------------------|-----------------|-------------------------------|
| 12V<br>24V     | 116°C<br>116°C                                        | 22<br>22        | 6.30<br>25.60                 |
|                |                                                       |                 | ETUL22W - 00/2007/e           |

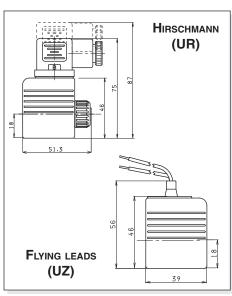
# (UR)

**H**IRSCHMANN

#### VARIANT AND VOLTAGE CODES (WICH HAVE TO PUT IN THE ORDERING CODE VALVE)

| "22W" MOUNTING COMPATIBILITY | CRP, CRD, C2V02 and C3V02 see Ch. V "Cartridge valves"                                                        |
|------------------------------|---------------------------------------------------------------------------------------------------------------|
| VARIANT CODE                 | UR = Hirschmann connection UZ = Solenoid with flying leads (500 mm) Other variants relate to a special design |
| VOLTAGE CODE                 | L = 12 VDC M = 24 VDC Voltage code is always stamped over on the coil                                         |




FLYING LEADS (UZ)

#### "27W" DC COILS - UL RECOGNIZED



| Type of protection (in relation to connector used)        | IP 65        |
|-----------------------------------------------------------|--------------|
| Number of cycle                                           | 18.000/h     |
| Supply tolerance                                          | -15% / +10%  |
| Ambient temperature                                       | -25°C ÷ 50°C |
| Power at +50°C (ambient temperature) for 12V coil         | 22W          |
| Power at +50°C (ambient temperature) for 24V coil         | 27W          |
| Power at -25°C (ambient temperature) for 12 and 24V coils | 32W          |
| Duty cycle                                                | 100% ED      |
| Insulation class wire                                     | Н            |
| Weight                                                    | 0,215 Kg     |

| Voltage<br>(V) | Max winding temperature<br>(Ambient temperature 25°C) | RATED POWER (W) | RESISTANCE AT 20°C (OHM) ±7% |
|----------------|-------------------------------------------------------|-----------------|------------------------------|
| 12V<br>24V     | 123°C<br>123°C                                        | 27<br>27        | 5.30<br>21.30                |
|                |                                                       |                 | ET27WUL - 00/2007/e          |



#### VARIANT AND VOLTAGE CODES (WICH HAVE TO PUT IN THE ORDERING CODE VALVE)

| "27W" MOUNTING COMPATIBILITY | AD2E ADC3E and CDL04 see Ch. I "Directional contro C3V03 see Ch. V "Cartridge valves" CDC3 see Ch. XI "Stackable valves"                        |  |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|
| VARIANT CODE                 | <ul><li>UR = Hirschmann connection</li><li>UZ = Solenoid with flying leads (250 mm)</li><li>Other variants relate to a special design</li></ul> |  |
| VOLTAGE CODE                 | L = 12 VDC M = 24 VDC Voltage code is always stamped over on the coil                                                                           |  |

